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Thesis directed by Dr. R. Steven Nerem

The Gravity Recovery and Climate Experiment (GRACE) mission has demonstrated the

ability to quantify global mass variations at large spatial scales with monthly to sub-monthly

temporal resolution. It is expected that future missions will take advantage of improved technologies

by flying drag-free and performing the satellite-to-satellite ranging with a laser interferometer. With

these improvements, errors due to undersampling geophysical signals will be the limiting error

source. In an effort to reduce the level of these temporal aliasing errors, we suggest the addition of

a second pair of satellites.

A Monte-Carlo analysis using numerical simulations is used to reduce the search space for

finding an optimal architecture consisting of two satellite pairs. A search space originally consisting

of fifteen variables is reduced to two variables with the utmost impact on mission performance: the

repeat period of both satellite pairs (shown to be near-optimal when they are equal to each other),

and the inclination of one of the satellite pairs (the other is assumed to be in a polar orbit). With

appropriate assumptions, we find that an optimal architecture consists of a polar pair of satellites

at 320 km coupled with a 290 km pair inclined at 72o, both in 13-day repeating orbits. The option

of estimating low resolution gravity fields at a high frequency is shown to further reduce temporal

aliasing errors.

Global and regional analyses are performed to quantify the expected scientific benefits of

adding an optimally-placed second pair of satellites. Analysis using empirical orthogonal functions

reveals that two satellite pairs determines annual and semi-annual mass variations in small basins

which are undetected using one pair of satellites. Averaging kernels and spatiospectral localization

are used to show error reductions ranging from 25% - 75% in determining mass variations over the

year in 53 hydrological basins, 12 Greenland basins, and one ocean basin. A simulated earthquake
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signal is also shown to be detected with higher spatial resolution. Perhaps the largest benefit of

having two satellites pairs is that the gravity solutions do not necessitate ad-hoc GRACE post-

processing techniques of removing correlated errors and smoothing when studying signals to spatial

resolution of ∼ 330 km.
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Chapter 1

Introduction

1.1 Why do we care about Gravity Measurements?

Isaac Newton first formulated the law of universal gravitation, stating that the force of

gravity between two point masses is a function of the mass of the two objects and the square of

the distance between them. Extending this problem to the Earth, which is not a point mass, the

gravitational force at any point on or above the Earth’s surface must be computed taking into

account the inhomogeneous mass distribution of the Earth. If one takes multiple measurements

of gravity at the same location but at different times, then time-variable gravity can be studied;

that is, how gravity changes over time. This change in gravity is directly related to how mass is

being redistributed within the Earth system, primarily in the form of water. Quantifying this mass

redistribution is of interest to many scientific disciplines and areas of study, some of which are listed

below [Sneeuw et al., 2005].

• Solid Earth Sciences - monitoring glacial isostatic adjustment, core motion, and plate
tectonics.

• Hydrology - monitoring ground water transport, soil moisture, and precipitation.

• Oceanography - determining mean flow, coastal currents, bathymetry, and bottom cur-
rents.

• Sea Level - monitoring global ocean mass change.

• Glaciology - monitoring melting and/or accumulation of polar ice caps, making ice mass
balance estimates.

• Geodesy - determining precise geoid heights, aiding in orbit determination and inertial
navigation by creating better static gravity field models.
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Each of these areas of interest has very different spatial and temporal scales. Figure 1.1

gives a detailed breakdown of the different spatial and temporal scales associated with geophysical

processes on the Earth. Any single satellite mission dedicated to recovering the gravity field cannot

determine the full range of spatial and temporal scales necessary to benefit all areas of science

included in Figure 1.1. Thus, the targeted spatial and temporal resolution of a gravity mission

directly affects which areas of science will benefit.

Figure 1.1: Temporal and spatial scales of geophysical processes, taken from Sneeuw et al. [2005]
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1.2 History of Gravity Measurements

Most of the scientific areas of study listed in Section 1.1 involve the study of the Earth

as a dynamic system, thus a time-series of gravity measurements are beneficial. Global time-

variable gravity measurements allowing for the study of many of the phenomena shown in Figure

1.1 were not available until recently, when the Gravity Recovery and Climate Experiment (GRACE)

satellites were launched in 2002. However, prior to GRACE, many efforts were made to take gravity

measurements and create a static gravity field model of the Earth.

Prior to the space age, gravity measurements had to be taken either on the land, using

terrestrial gravimetry techniques, or through the air, using airborne gravimetry. Both of these

processes were painstaking, and often hampered by both political and geographical boundaries

[Nerem et al., 1995].

The launch of Sputnik in 1957 marked the advent of satellite geodesy, and offered an easier

way to create a global gravity model of the Earth by tracking satellites and measuring perturbations

in their orbits. Through the mid-1960s, satellite cameras, radio Doppler, and radio interferometry

were primarily used to track satellites. The mid-1960s saw the development of the satellite laser

ranging (SLR) technique, which greatly increased satellite tracking accuracy, but was limited both

spatially and temporally, as there were a limited number of satellites in desirable orbits as well as

a sparse distribution of tracking stations around the globe. Gravity field models of the Earth were

developed using these data, but all were limited in their spatial resolution [Nerem et al., 1995].

Satellite altimetry further advanced the spatial resolution in the gravity field models. A

measurement of geoid height (an equipotential surface) was made simply by measuring the height

of the oceans and applying corrections to the measurements due to tidal and pressure variations.

Data from GEOS 3 (1975), Seasat (1978), Geosat (1985), ERS 1 (1991) and ERS 2 (1995), and

TOPEX/POSEIDON (1991), Jason-1 (2001), and Jason-2 (2008) all have provided improvements

in the determination of the static gravity field [Nerem et al., 1995].

The early 1990s brought with it two separate systems which quickly advanced the field of
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satellite geodesy by offering continuous, accurate satellite tracking: the French Doppler Orbitog-

raphy and Radiopositioning Integrated by Satellite (DORIS) system, and the Global Positioning

System (GPS). DORIS is a network of over fifty groundstations operated by France, offering near

continuous tracking of satellites by measuring Doppler shifts of radio signals. GPS took the idea

of global coverage one step further by placing a constellation of satellites in Medium Earth Orbit

(MEO) to provide continuous tracking of any satellite with a GPS receiver onboard [Nerem et al.,

1995]. These technologies allowed for much more accurate static gravity field models of the Earth

to be created. In 1998, EGM96 was released, representing the most accurate gravity model to

date. EGM96 was the result of a joint collaboration between between NASA Goddard Space Flight

Center (GSFC) and the National Imagery and Mapping Association (NIMA) using years of satellite

tracking and terrestrial gravity measurements [Lemoine et al., 1998].

In July of 2000, the Challenging Mini Satellite Payload (CHAMP) satellite was launched with

one goal being to quantify the Earth’s gravity field using a high precision GPS receiver. CHAMP

was found to be able to quantify annual and semiannual variations in the Earth’s gravity field when

combined with SLR ranging data to different satellites, including the Laser Geodynamics Satellites

(LAGEOS), out to approximately spherical harmonic degree 5 [Moore et al., 2005]. With more

recent improvements in data processing, CHAMP has been shown to recover time-variable gravity

in monthly intervals out to degree 10 [Flechtner , 2010], making it truly the first satellite to measure

time variable gravity beyond J2, as LAGEOS has already done.

However, there was still room for improvement after the launch of CHAMP. It was first

pointed out in 1969 that a low-low system, consisting of measurements between two satellites in

Low Earth Orbit (LEO), would provide better accuracy than that of a high-low system (such as

LEO satellites being tracked by GPS) [Wolff , 1969]. In 2002, GRACE became the first dedicated

low-low satellite mission dedicated to measuring the Earth’s gravity field. Along with it came

the first time-variable gravity measurements ever for higher degrees, allowing for increased spatial

resolution in determining mass movement about the Earth. The original mission lifetime of GRACE

was through 2007, but it has been running on an extended mission since then. Barring instrument
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failure, it is expected that the GRACE mission could continue performing through 2019 before

fuel runs out and the satellites deorbit due to atmospheric drag forces. However, at the time of

publication, failure of the batteries are of prime concern limiting the mission lifetime [Beerer and

Massmann, 2010]. The success of the GRACE mission has scientists from many different disciplines

calling for a follow-on mission to extend the time series of measurements. While a follow-on mission

has been scheduled in the NASA decadal survey with a tentative launch date around 2020, it is

also expected that additional funding for a gap-filler mission with a launch date of 2016 will be

appropriated. The tentative scheduling of these two missions leaves the scientific community hopeful

of the continuation of the time series of gravity measurements, allowing for discrimination between

secular signals and those with decadal periods.

The latest satellite mission which is dedicated to studying the gravity field is the Gravity Field

and Steady-State Ocean Circulation (GOCE) mission, which was launched in March of 2009 by the

European Space Agency (ESA). Unlike GRACE, GOCE is not designed to focus on time-variable

gravity, but instead aims to gain a much more accurate static gravity field model of the Earth

[Drinkwater et al., 2007]. The preliminary results from the GOCE mission have been extremely

encouraging.

This research focuses on the design of a follow-on mission to GRACE with the primary

scientific objective being the measurement of time variable gravity. Thus, future discussions will

involve the GRACE satellite mission.

1.3 GRACE: Mission Overview and Scientific Results

GRACE consists of two identical satellites in nearly circular polar orbits (inclination= 89.5o)

at an altitude of approximately 500 km. The two satellites are separated in the along-track direction

by approximately 220 km. GRACE has no altitude control system, so the altitude of the satellites

continually decays due to atmospheric drag forces. The two satellites are linked by a highly accurate

K-Band microwave ranging system [Dunn et al., 2003], which can measure the distance between

the spacecraft to the micron level. Each spacecraft is equipped with a high precision accelerometer
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[Touboul et al., 1999] along with GPS receivers. The accelerometers are necessary because the

mission objective of GRACE is to be able to isolate the motion of the satellites due to the Earth’s

gravitational field only; thus, the accelerometers allow one to measure and remove the effect of all

non-conservative forces (i.e. atmospheric drag, solar radiation pressure, Earth radiation pressure,

etc.) acting on the spacecraft in post-processing of the data. The GPS receivers allow for precise

orbit determination of the satellites along with precise time-tagging of the inter-satellite range-rate

measurements [Tapley et al., 2004a]. The chief observable of the GRACE mission is the set of

inter-satellite range-rate measurements. These measurements, when combined with the GPS and

accelerometer data, are put into a weighted least-squares filter to solve for the spherical harmonics

coefficients which define the Earth’s gravitational field in monthly intervals. Some groups have

pushed the temporal resolution of GRACE, solving for gravity fields every ten days [Bruinsma

et al., 2010; Sabaka et al., 2010], while the University of Bonn has adapted a Kalman filter to solve

for gravity fields in daily intervals [Kurtenbach et al., 2009].

GRACE has been a very successful mission to date, providing static gravity models more than

an order of magnitude better at long and mid-range wavelengths than their predecessors, including

EGM96 [Tapley et al., 2004a]. More importantly, scientists have used the GRACE data to quantify

temporal variations in important geophysical processes across the Earth. An entire book could be

written on the scientific accomplishments of the GRACE mission. While there is not room for this

account here, some of the more prominent accomplishments of GRACE are that scientists have been

able to measure ice mass loss in Greenland [Wu et al., 2010; Velicogna, 2009; Luthcke et al., 2006],

Antarctica [Chen et al., 2009], and the Alaskan glaciers [Luthcke et al., 2008], as well to monitor

terrestrial water storage in some of the world’s largest river basins [Han et al., 2005; Rodell et al.,

2007] and depleting water tables in India [Rodell et al., 2009; Tiwari et al., 2009]. Furthermore, sea

level rise [Leuliette and Miller , 2009] and ocean bottom pressure variations [Chambers and Willis,

2010] have been studied with the GRACE data along with large earthquake signals, including the

2004 Sumatra-Andaman earthquake [Chen et al., 2007; Panet et al., 2007; Han and Simons, 2008]

and the 2010 Maule, Chile earthquake [Han et al., 2010; Heki and Matsuo, 2010]. A good summary
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of the accomplishments of the GRACE mission up through 2009 can be found in Loomis [2009].

1.4 Improving upon GRACE

When one thinks of quantifying the performance of the GRACE mission, one can think

in terms of temporal and spatial resolution of the derived gravity fields; that is, how often does

GRACE provide a global gravity field estimate, and what is the spatial resolution of this estimated

global gravity field? Traditionally, the temporal resolution of GRACE is 30 days, as a new gravity

field estimate is made every month. As mentioned previously, however, some groups have managed

to get ten-day solutions and even daily solutions from the GRACE data. The daily solutions are not

independent from one another, however; they are tied together via a Kalman filter using constraints

on apriori information. Quantifying the spatial resolution of GRACE is a bit more complicated,

as the spatial resolution for signals across the globe can be different based on the density of the

groundtracks in the area, the magnitude of the geophysical signal, as well as the magnitude of the

errors in the particular location. Typically, however, users tend to view 400 km as a lower limit

on the spatial resolution of the GRACE data. It should be noted that the spatial resolution of the

derived static gravity field (gained from combining years of GRACE data) is considerably higher

than that of the monthly gravity fields.

When designing a follow-on mission, it is desirable to understand the limiting sources of error

for GRACE such that one can design a new mission to gain improved spatial and temporal resolution

of the solutions. Unfortunately, the limiting error source for GRACE is not yet fully understood

[Visser et al., 2010]. However, what one can do in this circumstance is to isolate each individual

source of error in a simulation environment, predict what the limiting source of error will be for

future missions, and study methods to gain better spatial and temporal resolution. Currently, it is

thought the largest errors associated with GRACE are due to the microwave ranging instrument,

the accelerometers, attitude errors, orbit errors, and temporal aliasing errors due to undersampling

geophysical signals of interest as well as mis-modelling unwanted signals [Loomis et al., 2010]. Each

of these error sources will be discussed in the following paragraphs.
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One possible way to increase the spatial resolution for a follow-on mission which has been

discussed for some time is to replace the microwave ranging instrument with a laser interferometer

[Bender , 1992; Colombo and Chao, 1997; Bender et al., 2003; Aguirre-Martinez and Sneeuw , 2002;

Pierce et al., 2008], allowing the distances between the spacecraft to be measured with greater

accuracy. The K-band microwave ranging instrument measures the inter-satellite baseline dis-

tances to the micrometer level; a laser interferometer is expected to make the measurements with

approximately 3 orders of magnitude greater precision, down to the nanometer level.

Another possible way to improve mission performance is to use a drag-compensation system

(flying “drag-free”) rather than using accelerometers to measure non-gravitational forces. The ad-

vantage of drag-free operation is that rather than measuring non-gravitational forces acting on the

satellite, a shielded proof mass is used as a reference point for the inter-satellite measurements. A

thruster system then operates to counteract non-gravitational forces acting on the satellite to keep it

centered about the proof mass. The proof mass acceleration noise is lower than in the case of an ac-

celerometer since the uncertainty associated with accelerometer scale factor is avoided. The GOCE

mission is the first mission to successfully implement single-axis drag-free control [Drinkwater et al.,

2007]. Further development of drag-free technology is under way for the Laser Interferometer Space

Antenna (LISA) mission [Dolesi et al., 2003] as well. Implementing drag-free technology may also

allow the spacecraft to fly at lower altitudes, giving better sensitivity to short wavelength features in

the gravity field [Aguirre-Martinez and Sneeuw , 2002]. The disadvantage to flying at lower altitudes

is that atmospheric drag forces increase exponentially at lower altitudes, thus, limiting the lifetime

of the satellites. For example, GOCE was designed for an approximate 2-year mission lifetime at

an altitude of 255 km. Conversely, the GRACE mission was designed for a 5-year mission lifetime

at 480 km. It should be mentioned, however, that due to the extended solar minimum, GOCE is

expected to continue performing long beyond its expected mission lifetime [Fehringer et al., 2010],

and, as mentioned previously, GRACE is currently in its ninth year of operations.

Another potential source of error is the attitude of the satellites. This was not considered

a potential limiting source of error until recent investigations [Horwath et al., 2011; Bandikova
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et al., 2010]; as such, it has not been considered in this study. Attitude information is necessary to

calculate corrections to the geometric center of the inter-satellite ranging measurements as well as

to orient the accelerometers. Attitude information can be improved with better star trackers.

Errors in determining the absolute spacecraft positions are also a source of error in the mis-

sion. The GRACE orbits are known to approximately 1 cm. To improve upon this, one would need

better GPS receivers onboard or more sophisticated orbit determination strategies when solving

for the orbits.

Temporal aliasing errors are also considered to be a leading error source for GRACE [Thomp-

son et al., 2004; Han et al., 2004; Zenner et al., 2010], and arise from undersampling geophysical

signals which have a period less than twice the sampling period of the mission, according to the

Nyquist sampling theorem. These signals can subsequently be categorized into those with no a

priori information, and thus, alias fully, and those for which a priori information from a model

is available, mitigating the effect of aliasing. When the GRACE data are processed, the contri-

bution from the atmosphere, oceans, and tides are removed from the data using a set of models,

leaving all other signals in the solution (primarily hydrology and ice). Thus, hydrology and ice

signals alias fully into the solutions, while the aliasing errors from the atmosphere, oceans, and

tides are mitigated by the modelling. There are three primary methods which one can hope to

reduce the effect of temporal aliasing errors. The first is by sampling more frequently, which can

be achieved using multiple pairs of satellites. The second is to improve the atmosphere, ocean, and

tide models, and the third is to co-estimate parameters which vary at high frequencies, such as a

set of spherical harmonic coefficients defining these high frequency variations. This study focuses

on mitigating temporal aliasing errors via a combination of sampling more frequently with a second

pair of satellites, and co-estimating high frequency parameters that define temporal aliasing errors.

Taking into account the above discussion, Figure 1.2 shows the effect of different error sources

in determining the geoid height on a simulated satellite mission over 30 days consisting of one pair

of collinear satellites at 475 km altitude separated by 220 km. The satellites are in circular, polar

orbits, and fly a 30-day repeating groundtrack. These parameters were chosen to be similar to the
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current GRACE mission, with the exception of having an exact repeating groundtrack. For this

simulation, each source of error was isolated such that its individual effect could be quantified.

0 20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Degree

G
eo

id
 H

ei
gh

t E
rr

or
 (

cm
)

 

 
Microwave + Accelerometer Error
Laser + Drag−free Error
Tide Error
Atmosphere + Ocean Error
Hydrology Error

Figure 1.2: Geoid height error as a function of spherical harmonic degree for different isolated
sources of error

Two different levels of measurement system errors are considered in Figure 1.2: one case is

similar to GRACE with a microwave ranging instrument and accelerometers, and the other case

assumes the spacecraft are flying drag-free and the microwave ranging instrument has been replaced

with a laser interferometer. Each case is contaminated with 1 cm RMS orbit error. The noise on

the microwave ranging instrument is taken to be 1.8 µm/
√
Hz and the accelerometer error is that

described in Loomis et al. [2010], resembling the level of error in GRACE. The noise on the laser

interferometer is taken to be 5 nm/
√
Hz [Alnis et al., 2008; Mueller et al., December 2005; Wiese

et al., 2009; Young et al., 1999], and the noise on the drag-free system is .01 nm/s2/
√
Hz, which is

approximately the level of error of the GOCE accelerometers [ESA, 1999]. The atmosphere, ocean,

and tide errors are given by the difference between two sets of models, defined in Table 3.1, and

the hydrology error is due to undersampling of the GLDAS hydrology model.
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Figure 1.2 shows that when only measurement system errors are considered, flying drag-

free with a laser interferometer offers several orders of magnitude improvement in determining the

height of the geoid over the current GRACE mission. However, the level of errors for undersampling

hydrology, and mis-modelling the atmosphere, ocean, and tides are substantially higher than the

level of error from the laser interferometer and drag-free system. This indicates that to see an

improvement from the laser interferometer and drag-free system, one must first lower the level of

errors due to temporal aliasing. Hence, this becomes the motivation for our study. Note that orbit

errors at the present level of accuracy are not a limiting source of error.

Additionally, there are two ever present problems associated with the GRACE data that must

be addressed: 1) Errors at high degrees tend to dominate the gravity solutions, and (2) correlations

between coefficients of a particular order and the same parity of degree lead to longitudinal striping

in the gravity solutions. The correlations of (2) arise because the polar orbiting two-satellite

collinear architecture that GRACE uses has little East-West sensitivity to variations in the gravity

field. These correlated coefficients become difficult to separate during the estimation process, and

manifest as North-South errors in the gravity solutions (known as ‘stripes’). Several methods have

been devised to handle (1) and (2) both collectively and independently. Techniques for handling

(1) independently involve spatial smoothing of the data [Jekeli , 1981; Wahr et al., 1998; Han et al.,

2005; Chen et al., 2006; Guo et al., 2010]. These techniques can reduce the effects of (2) as well if

a large enough smoothing radius is selected. Filters devised to handle (2) independently (some of

which simultaneously address (1)), can be classified into two categories: empirical filters not reliant

on outside information [Swenson and Wahr , 2006; Chambers, 2006; Chen et al., 2007; Schrama

et al., 2007; Wouters and Schrama, 2007; Davis et al., 2008; Duan et al., 2009], and filters which

make use of error-covariance information [Kusche, 2007; Klees et al., 2008; Save, 2009]. Each of

these techniques has advantages and disadvantages: some reducing errors more than others, and

some requiring less computation time than others. Due to lack of error-covariance information and

desiring a relatively easy and computationally efficient process to account for the errors, typical

users of the GRACE data tend to remove correlated errors via an empirical filter similar to Swenson
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and Wahr [2006] and reduce errors at high degrees via Gaussian smoothing [Jekeli , 1981].

It should additionally be noted that aliasing errors cause striping in the estimated gravity

fields; these stripes are referred to as striations. They occur because the satellites will pass very

near the same location perhaps 10 days apart, but get very different measurements of gravity

due to changes that have taken place on short time scales within the 10 days (tides, atmosphere,

hydrology, oceans). These different measurements at the same location, but at different times,

appear as striations in the monthly estimate of the gravity field.

From a design standpoint, it would be desirable to adopt a mission architecture such that

the resulting gravity solutions do not require the post-processing techniques discussed above. One

way to do this is to fly an alternative satellite formation where measurements in more than one

direction are made. For example, measurements made by satellites in a cartwheel formation are

directed in a continually-varying combination of along-track and radial directions, thus enhancing

the spatial resolution of the derived gravity fields and reducing the longitudinal striping [Sharifi

et al., 2007; Wiese et al., 2009; Elsaka, 2010]. Another option would be to have multiple collinear

satellite pairs, one of which is at a lower inclination, thus adding East-West information to the

observable and reducing correlations between coefficients [Bender et al., 2008].

1.5 Previous Investigations of Future Missions

Due to the success of the GRACE mission, there has been considerable interest in exploring

mission architectures for the next generation of missions dedicated to measuring time variable grav-

ity. A comprehensive analysis by Loomis et al. [2010] explored on a regional level the benefit that

flying a collinear formation (similar to GRACE) drag-free with a laser interferometer would provide

in determining temporal gravity variations. It was found that with the improved instrumentation

suite, extremely minor improvements in performance were found over what the current GRACE

mission provides. Temporal aliasing errors were shown to be the limiting source of error, agreeing

with the results presented in Figure 1.2.

Several authors have studied the idea of flying a different satellite formation, rather than the
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collinear formation that GRACE employs. The benefit to an alternate formation is that measure-

ments in more than one direction could be made, thus enhancing the information in the observable

and reducing the longitudinal striping. Sneeuw and Schaub [2005] discussed the formation dy-

namics assosiated with possible alternate formations, including the cartwheel formation, pendulum

formation, and a LISA-type formation. In the cartwheel formation, the satellite orbits are designed

such that they perform relative 2:1 elliptical motion in the radial/alongtrack plane of the satellite’s

motion. Hence, one gains measurements in the alongtrack as well as the radial directions. In a

pendulum formation, the satellites are slightly offset from each other in the node as well as mean

anomaly, creating a formation where measurements are made in the crosstrack and alongtrack di-

rections. Both of these formations were shown to be stable over long time periods. The LISA-type

formation was shown to be unstable; hence, it will not be discussed here.

Building upon this work, Sharifi et al. [2007], Sneeuw et al. [2008], and Encarnacao et al.

[2008] ran numerical simulations comparing each formation type, contaminating the observations

with realistic noise levels. The results from each study were consistent in that the cartwheel and

pendulum formations were shown to have lower errors, more isotropic error spectrums, and reduce

the level of striping in the solutions. While the results from these studies were promising, they

did not account for temporal aliasing errors in the numerical simuations. A study by Wiese et al.

[2009] expanded upon this work, comparing the abilities of the cartwheel and collinear formations

in recovering temporal gravity variations in the presence of temporal aliasing errors due to mis-

modelling of atmosphere and ocean mass variations. This study also assumed that the spacecraft

took advantage of new technologies (i.e. flying drag-free with a laser interferometer). The results

showed that while the cartwheel formation did reduce the longitudinal striping in the solutions, the

overall level of errors between the two formations were equal. The conclusion was that while the

cartwheel formation does offer improved sensitivity to gravity variations, the formation dynamics

do not aid in reducing the level of temporal aliasing errors.

A more recent study by Elsaka [2010] offered the most comprehensive analysis of different for-

mation types and their abilities to detect temporal gravity variations. Temporal aliasing errors from
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all sources were considered in the study (hydrology, atmosphere, ocean, tides), along with different

levels of instrument noise. A cartwheel, pendulum, collinear, and a combined collinear-pendulum

formation consisting of three satellites was explored. The results differed from Wiese et al. [2009] in

that the different formation types were shown to provide improvements in determining gravity vari-

ations even when temporal aliasing errors were considered. The reason for the discrepancy between

the results could result from two factors: (1) different models were used to define temporal aliasing

errors, and (2) the two studies used completely different solution strategies to solve for gravity

variations. Preliminary investigations into the discrepancies suggest that the differences in results

arise primarily because of (2). Elsaka [2010] used a short-arc method developed at the University

of Bonn in which data is accumulated in 30 minute arcs, to avoid build-up of unmodeled distur-

bances, such as temporal aliasing errors. Conversely, Wiese et al. [2009] used daily arcs of data,

similar to the processing that is employed at other GRACE processing centers including the Center

for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), and

Goddard Space Flight Center (GSFC). Currently, it appears that the short-arc method reduces the

accumulation of temporal aliasing errors, allowing one to take advantage of the improved dynamics

that other formations offer. This conclusion is still under investigation, however.

In addition to being more technologically challenging to implement, flying different satellite

formations also have the common disadvantage of having the same temporal sampling character-

istics as a collinear formation given the same number of satellite pairs. From Dirac [1958], the

Heisenburg uncertainty principle of spatio-temporal sampling states that the product of spatial

sampling and temporal sampling is a constant; that is, one cannot gain better spatial resolution

without sacrificing temporal resolution and vice-versa. The only way to improve both simultane-

ously is to add additional satellite pairs, which was demonstrated in Reubelt et al. [2008]. The

concept of adding an additional pair of collinear satellites in a polar orbit was explored in Wiese

et al. [2009], Elsaka [2010], and Visser et al. [2010]. Each study showed that temporal aliasing

errors were reduced; however, longitudinal stripes still dominated the solutions.

[Bender et al., 2008] first suggested the idea of having a polar pair of satellites coupled with
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a lower inclined pair of satellites. The advantage to such an architecture is three-fold: (1) the

temporal resolution of the mission is increased, (2) the addition of the lower inclined pair adds

East-West information to the observable which should reduce the longitudinal striping, and (3) the

groundtrack pattern of such an architecture is more homogeneous than an architecture consisting

of only polar pairs of satellites. The study by Visser et al. [2010] explored the option of having

such an architecture; with a polar-orbiting pair in a 5-day repeat period coupled with a lower

inclined pair at 117o in a 23-day repeat period. The results averaged over shorter time periods were

encouraging from this formation. However, this study was limited in the sense that it was a point

case study; examining only a single architecture of this type, and did not attempt to optimize such

an architecture. Additionally, it focused solely on temporal aliasing errors from ocean tides.

1.6 Project Overview

In April of 2007, a workshop on the future of satellite gravimetry was held in Noordwijk,

Netherlands, from which several conclusions and recommendations were reached. One of the reso-

lutions reads: “Medium term priority should be focused on higher precision and higher resolution

in space and time. This step requires (1) the reduction of the current level of aliasing (of high

frequency phenomena, in particular tides, into the time series), (2) the elimination of systematic

distortions (caused by the peculiar non-isotropic sensitivity of a single pair low-low SST), and (3)

the improvement of the separability of the observed geophysical signals” [Koop and Rummel , 2007].

This resolution, coupled with the results from previous studies discussed above, have given direction

to this dissertation.

The main goal of this resarch project is to reduce temporal aliasing errors through the use of

multiple satellite pairs in a collinear formation. In the process of doing so, we aim to show that the

“systematic distortions” (longitudinal stripes) can also be reduced. While one could theoretically

reduce temporal aliasing errors to near-zero by flying dozens, if not more, pairs of satellites (although

the problem of signal separation would still exist given this scenario), this option is, of course, cost-

prohibitive at the moment. As such, we study the more economically feasible option of optimizing
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the orbits given two pairs of satellites, and quantifying the expected improvements in determining

geophysical signals of interest (hydrology, ice mass variations, ocean bottom pressure variations,

earthquakes). Additionally, alternate processing methodologies are explored in an effort to further

reduce temporal aliasing errors.

The remainder of this dissertation is divided into six additional chapters. A brief description

of the contents of each chapter is listed below. Additionally, this work has been compiled into three

journal articles: Wiese et al. [2011c] corresponding to Chapter 4, Wiese et al. [2011b] corresponding

to Chapter 5, and Wiese et al. [2011a] corresponding to Chapter 6.

• Chapter 2 - This chapter contains the mathematical foundation necessary for describing
the Earth’s gravity field in terms of spherical harmonic coefficients. Mathematical de-
scriptions of the performance metrics (both globally and regionally) used in this study are
provided.

• Chapter 3 - This chapter contains definitions of the measurement system errors used in
this study as well as temporal aliasing errors. Details of the numerical simulation process
are given. All models (hydrology, ice, atmosphere, ocean, tides) are defined in this chapter.

• Chapter 4 - This chapter discusses an alternate processing methodology in which low
resolution gravity fields are estimated at high frequencies in an effort to reduce temporal
aliasing errors is explored. The effectiveness of this process is quantified for the case of a
single pair of satellites, two polar pairs of satellites, and a polar pair of satellites coupled
with a lower inclined pair of satellites.

• Chapter 5 - This chapter deals with the process of optimizing a mission architecture con-
sisting of two pairs of collinear satellites. A Monte-Carlo analysis of numerical simulations
is used reduce the search space, and appropriate mission architectures are recommended.

• Chapter 6 - This chapter quantifies the expected scientific improvements in recovering
hydrology, ice mass variations, ocean bottom pressure signals, and earthquakes that hav-
ing a near-optimal architecture consisting of two satellite pairs provides over a one-pair
architecture. Results are analyzed on global and regional scales.

• Chapter 7 - This chapter provides a summary of the dissertation, including recommen-
dations.
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Chapter 2

Theory

2.1 Introduction

This chapter provides a mathematical formulation of the Earth’s gravity field in terms of

spherical harmonic functions, along with definitions necessary to understand the results shown in

this work. Definitions of global and regional analysis techniques used to quantify mission perfor-

mance are also provided.

2.2 Definitions

This section of text contains definitions necessary to understand the results presented in

this dissertation. Included in this section are a mathematical representation of spherical harmonic

functions used to represent the Earth’s gravity field along with mathematical definitions for the

geoid as well as surface mass density, two quantities which are useful to characterize temporal

gravity variations.

2.2.1 Spherical Harmonics

The Earth’s gravitational field is traditionally expressed in spherical harmonics. This notation

is convenient and natural due to the shape of the Earth. This section provides a brief introduction

to spherical harmonics. For a more detailed derivation and discussion, the reader is referred to

Kaula [1966]; Seeber [2003]; Torge [2001].
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For any point mass outside the surface of the Earth, the gravitational potential, V , of the

object must be satisified by LaPlace’s equation [Kaula, 1966]:

∇2V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0. (2.1)

Equation 2.1 is expressed in cartesian coordinates. It is much more natural to work in spherical

coordinates given the shape of the Earth. The conversion from cartesian to spherical coordinates

is given by the following:

x = r cosφ cos λ,

y = r cosφ sinλ, (2.2)

z = r sinφ,

where r is the distance from the center of mass of the Earth to the point mass, φ is the latitude, and

λ is the longitude. Figure 2.1 gives a graphical representation of the Earth-Centered-Earth-Fixed

(ECEF) coordinate system described in spherical coordinates.
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Figure 2.1: ECEF frame in spherical coordinates

Using the relationships in Equation 2.2, LaPlace’s equation can be rewritten in spherical

coordinates as

∇2V =
1

r2
∂

∂r

(

r2
∂V

∂r

)

+
1

r2 cosφ

∂

∂φ

(

cosφ
∂V

∂φ

)

+
1

r2 cos2 φ

∂2V

∂λ2
= 0. (2.3)



www.manaraa.com

19

To solve Equation 2.3 for the gravitational potential, V , it would be convenient if V had the

form (separation of variables)

V = R (r)Φ (φ) Λ (λ) . (2.4)

Assuming the solution has this form, and after many mathematical steps, one ultimately finds that

the gravitational potential can be expressed as [Seeber , 2003]

V =
GM

r

(

1 +

∞
∑

n=1

n
∑

m=0

(rE
r

)n
Pnm(sinφ)(Cnm cosmλ+ Snm sinmλ)

)

. (2.5)

In Equation 2.5, Pnm (sinφ) are the associated Legendre functions, Cnm and Snm are the

spherical harmonic coefficients, rE is the radius of the Earth, G is the gravitational constant, and

M is the mass of the Earth. Note that n and m are the degree and order, respectively, of the

spherical harmonic coefficients.

The associated Legendre functions can be calculated using the following [Kaula, 1966]:

Pnm (sinφ) = cosm φ

k
∑

t=0

Tnmt sin
n−m−2t φ, (2.6)

where

Tnmt =
(−1)t (2n − 2t)!

2nt! (n− t)! (n−m− 2t)!
, (2.7)

and k is the integer part of (n−m) /2.

In Equation 2.5, the geopotential coefficients Cnm and Snm are referred to as unnormalized

gravity field coefficients. The Legendre associated functions are also unnormalized. It is con-

ventional practice to define and use a set of fully normalized geopotential coefficients and fully

normalized associated Legendre functions. These are defined as [Torge, 2001]:

Pnm(sinφ) =

[

k(2n + 1)(n−m)!

(n+m)!

]1/2

Pnm(sinφ), (2.8)











Cnm

Snm











=

[

(n+m)!

k(2n + 1)(n−m)!

]1/2











Cnm

Snm











, (2.9)

with k = 1 for m = 0, and k = 2 for m 6= 0.
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Substituting the normalized definitions into Equation 2.5, the gravitational potential can be

expressed as

V =
GM

r

(

1 +
∞
∑

n=1

n
∑

m=0

(rE
r

)n
Pnm(sinφ)(Cnm cosmλ+ Snm sinmλ)

)

. (2.10)

Possibly the most important property of spherical harmonics is that they are orthogonal

to each other [Kaula, 1966], making them the natural means for representing a function over a

spherical surface. This orthogonality can best be seen by defining different types of spherical

harmonics. When the order m = 0, the harmonics are referred to as zonal harmonics. For m > 0,

m 6= n, they are referred to as tesseral harmonics, and when m = n, they are called sectorial

harmonics [Torge, 2001]. Figure 2.2 shows the three types of harmonics graphically.

Figure 2.2: Examples of harmonic types: (i)Zonal (ii)Sectorial (iii)Tesseral.

Figure 2.2 shows that any geopotential coefficient, Cnm, has n −m zeroes, or nodal lines of

latitude, in a distance π along a meridian. Additionally, it will have exactly m zeroes in the same

distance along the line of latitude; that is, it has m nodal lines of longitude along a distance π

measured around a line of latitude. For example, in Figure 2.2, the C40 coefficient is the zonal

harmonic example, the C33 coefficient is the sectorial harmonic example, and the tesseral harmonic

example is given by the C63 coefficient.

2.2.2 Geoid Definition

The geoid is defined as a surface of constant potential energy which coincides with mean sea

level over the oceans. The height of the geoid, N, is defined with respect to a reference ellipsoid,

as seen in Figure 2.3.
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Figure 2.3: Definition of the geoid height N

Note that the geoid does not coincide with the Earth’s surface, but can lie above or below

it depending on the potential energy at the location of interest. The reference ellipsoid, which

describes to first order the shape of the Earth, is described with a flattening coefficient given by

f =
a− b

a
, (2.11)

where a and b are the equatorial radius and polar radius, respectively. The current accepted value

of f is 1/298.257 [Vallado, 2001].

Remember that potential energy at any point on the reference ellipsoid, or on the geoid, is

defined by both the gravitational potential energy (V) as well as the potential energy associated

with the rotation of the Earth. The absolute potential energy, called the potential of gravity, is

defined as [Kaula, 1966]

W (r, φ, λ) = V (r, φ, λ) +
1

2
ω2r2 cos2 φ, (2.12)

where ω is the rotation rate of the Earth.

The potential associated with the reference ellipsoid is defined as the normal potential, UP ,

while the potential on the geoid is defined as the actual potential, or potential of gravity, WP . One

can then define a disturbing potential, TP , as the difference between the actual potential and the

normal potential, [Torge, 2001],

TP =WP − UP . (2.13)

Since both WP and UP have the same rotational term in them (seen in Equation 2.12), this

term differences out and the disturbing potential is given by [Torge, 2001]

TP =
GM

r

∞
∑

n=2

n
∑

m=0

(rE
r

)n
Pnm(sinφ)(C

∗
nm cosmλ+ Snm sinmλ), (2.14)
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with

C
∗
nm = C

obs
nm - C

ref
nm.

The C
ref
nm values are the spherical harmonic coefficients of the reference ellipsoid. The reference

ellipsoid is often defined using only C20, C40, and C60, but additional zonal terms can be included

if desired. Note that Equation 2.14 assumes the origin of the coordinate system has been placed at

the center of mass of the Earth, as this makes all n = 1 terms go to zero.

The geoid height, N , can then be calculated from the disturbing potential by [Torge, 2001]

N =
TP
γ

∣

∣

∣

∣

r=rE

, (2.15)

where

γ =
GM

r2
. (2.16)

Note that this definition for γ uses a spherical approximation for the Earth, but in reality, γ is

taken from the reference ellipsoid.

Finally, evaluating Equation 2.15 gives the definition for geoid height as [Torge, 2001]

N = rE

∞
∑

n=2

n
∑

m=0

Pnm(sinφ)(C
∗
nm cosmλ+ Snm sinmλ). (2.17)

In practice, one would not sum to infinity, but to some finite value of n = nmax in Equation 2.17.

A primary goal of this project is to determine time variations in the Earth’s gravity field.

The change in gravitational signal from one time to the next, can be expressed in terms of geoid

height as

∆N = rE

∞
∑

n=2

n
∑

m=0

Pnm(sin φ)(∆Cnm cosmλ+∆Snm sinmλ). (2.18)

Note that the denotation for the reference ellipsoid has dropped since it will difference out from

one time to the next.

2.2.3 Surface Mass Density

Equation 2.18 expresses changes in the Earth’s gravity field in terms of geoid height. A more

common way to express these changes is in terms of surface mass density. Assume that a change
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in geoid, given by Equation 2.18, is caused by a density redistribution ∆ρ(r, φ, λ) concentrated in

a thin layer of thickness H at the Earth’s surface. For applications to the GRACE data, this layer

must be thick enough to include all significant mass variations, including ground water storage, ice

caps, atmosphere, and oceans. A typical thickness for this layer would be on the order of 10-15

km. The change in surface density, ∆σ, can then be defined as [Wahr et al., 1998]

∆σ(φ, λ) =

∫

layer
∆ρ(r, φ, λ)dr. (2.19)

Assuming that (nmax + 2)H/rE << 1, and recognizing that the change in geoid comes not

only from the gravitational attraction of the surface mass, but also from the elastic response of the

Earth deforming to the load, it can be shown that [Wahr et al., 1998]

∆σ(φ, λ) =
rEρE
3

∞
∑

n=0

l
∑

m=0

2n+ 1

1 + kn
Pnm(sinφ)(∆Cnm cosmλ+∆Snm sinmλ) (2.20)

In Equation 2.20, ρE is the average density of the Earth, and kn are the elastic Love numbers as

computed by Han and Wahr [1995] describing the deformation of the solid Earth to a load. Finally,

it is common to express changes in gravity in terms of equivalent water height (EWH). The change

of surface mass in terms of EWH is simply ∆σ/ρw, where ρw is the density of water (assumed to

be 1000 kg/m3).

2.3 Analysis Techniques

There are a variety of tools which can be used to analyze GRACE data. This section of text

describes the tools used in this paper, for both global and regional analysis.

2.3.1 Global Techniques

2.3.1.1 Geoid Degree Error

This study quantifies gravity field errors globally using a geoid degree difference, which allows

for easy comparison of results. One can first define a degree difference variance as [Kim, 2000]

σ2n(∆) =

n
∑

m=0

(∆C
2

nm +∆S
2

nm) (2.21)
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where

∆Cnm = (Cnm)estimate − (Cnm)truth,

∆Snm = (Snm)estimate − (Snm)truth.

Note that the degree difference variance is only valid for simulations, as the truth cannot be known

in reality.

For this study, it is useful to present the errors in terms of geoid height. Multiplying the

degree difference variance given in Equation 2.21 by the square of the radius of the Earth, rE , forms

the geoid degree difference variance, given as [Torge, 2001]

σ2n(∆N) = r2Eσ
2
n(∆) = r2E

n
∑

m=0

(∆C
2

nm +∆S
2

nm). (2.22)

It is furthermore useful to present this error in units of length, thus requiring one to take the

square root of Equation 2.22. The expression for the geoid degree difference, ∆Nn is then defined

as

∆Nn =
√

σ2n(∆N) = rE

√

√

√

√

n
∑

m=0

(∆C
2

nm +∆S
2

nm). (2.23)

Equation 2.23 is used to create geoid degree error plots for this study. This analysis allows one

to quantify the amount that each degree contributes to the geoid height error. Alternately, one

can also express the errors as a function of order, rather than degree, using a slightly modified

expression as that in 2.23.

2.3.1.2 Spatial RMS

The geoid degree difference, given in Equation 2.23 represents the errors of the gravity field

in the spectral domain. The end users of the GRACE data are typically more interested in what is

happening in the spatial domain; i.e. the accuracy to which certain geophysical signals are being

determined. As such, it is useful to define a global performance metric in the spatial domain. A

rather rudimentary, but effective method of doing so, is to define a spatial RMS. This is simply

done by differencing a spatial plot of the recovered signals from a spatial plot of the truth signals,



www.manaraa.com

25

creating a spatial plot of errors. The spatial RMS is then calculated simply by taking the RMS of

the spatial plot of errors, given a predefined grid (such as 1o × 1o), and weighting by area.

2.3.1.3 Empirical Orthogonal Functions

Several studies have made use of empirical orthogonal functions (EOFs) to analyze GRACE

data. In a general sense, EOFs are used to capture the dominant modes of a time series of data,

both spatially and temporally. Given a time series with N points and M spatial locations, we define

a matrix Z with M columns and N rows, where

Z = Aζ1/2ET . (2.24)

In Equation 2.24, A is a matrix with the principal components (the time part) and E is a matrix

with the eigenfunctions, or basis functions (the space part). ζ is a diagonal matrix with the main

diagonal elements being the eigenvalues, and are proportional to how much variance is carried by

each basis function.

We can now define a scatter matrix, S, as [Preisendorfer , 1988]

S = ZTZ = Eζ1/2ATAζ1/2ET = EζET . (2.25)

This is a well-known eigenvalue problem, and one can easily solve for E and ζ, given this equation.

Once E is obtained, the principal components, A, can be solved for via substitution into Equation

2.24.

As such, given a time series of spatial gravity field maps, one can solve for the dominant

spatial modes (given by E), along with the respective time signatures of the modes (given by A).

The percent variance that each mode captures is provided by ζ.

2.3.2 Regional Techniques

While global analyses are useful for a first-order approximation of performance, they are

insufficient by themselves, as they disregard the different spatial distributions of signals and errors,
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as pointed out by Han and Ditmar [2008]. As such, regional analyses are necessary to more accu-

rately quantify the expected mission performance. While there are a host of techniques available to

perform regional analyses, the two used in this dissertation are averaging kernels and spatiospectral

localization.

2.3.2.1 Averaging Kernels

Averaging kernels are traditionally used to quantify mass variations in a region of interest over

a specified amount of time. From Swenson and Wahr [2002], an exact averaging kernel representing

the shape of a basin is given by

ϑ(φ, λ) =











0 outside the basin

1 inside the basin

(2.26)

One can then represent the change in vertically integrated water storage over a region as

∆σregion =
1

Ωregion

∫

∆σ(φ, λ)ϑ(φ, λ)dΩ, (2.27)

where Ω is the area of the region. Substituting the expression for surface density from Equation

2.20 into Equation 2.27, the average surface mass density over a region is given by [Swenson and

Wahr , 2002]

∆σregion =
rEρE

3Ωregion

∞
∑

n=0

n
∑

m=0

2n+ 1

1 + kn
(ϑcnm∆Cnm + ϑsnm∆Snm) (2.28)

where ϑcnm and ϑsnm are the spherical harmonic coefficients describing ϑ(φ, λ), given by

ϑ(φ, λ) =
1

4π

∞
∑

n=0

n
∑

m=0

Pnm(sinφ)(ϑcnm cosmλ+ ϑsnm sinmλ) (2.29)











ϑcnm

ϑsnm











=

∫

ϑ(φ, λ)P nm(sin φ)











cosmλ

sinmλ











dΩ. (2.30)

In practice, one would not sum n to ∞ in Equation 2.28, but rather would truncate at some

specific degree, nmax. Truncating introduces an error, as not including all values of n results in

an inaccurate representation of the basin shape, and causes ringing around the boundaries of the
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basin known as the Gibbs phenomenon. Alternately, one can define an approximate averaging

kernel, W , by replacing ϑcnm and ϑsnm in Equation 2.28 with W c
nm and W s

nm. This new kernel can

be computed a variety of ways; Swenson and Wahr [2002] compute it using Gaussian smoothing

as well as with a Legendre multiplier method. The disadvantage to introducing an approximate

averaging kernel, given by W , is that while it does decrease truncation error by suppressing short

wavelength coefficients, it introduces leakage error into the solution. In this study, we use both

exact averaging kernels and Gaussian smoothed averaging kernels.

2.3.2.2 Spatiospectral Localization

The principle behind spatiospectral localization is simply to apply an isotropic windowing

function that maximizes the ratio of energy of the function within the defined region of interest to

that of the entire sphere to obtain a localized representation of the signal. In general, we wish to

solve for a localized version (y(Ω)) of a global signal (f(Ω)) given by the following

y (Ω) = h (φ) f (Ω) , (2.31)

where h(φ), is an optimal zonal windowing function. The spherical harmonic coefficients describing

y(Ω) are given by Wieczorek and Simons [2005] as

ynm =

Nh
∑

j=0

n+j
∑

i=|n−j|
hjfim

√

(2i+ 1) (2j + 1) (2n+ 1) (−1)m







i j n

0 0 0













i j n

m 0 −m






. (2.32)

The matrix symbols in parentheses in Equation 2.32 are Wigner 3-j functions. The only

unknown parameter in Equation 2.32 is the term hj which are the coefficients of the windowing

function, and it is left to the user to define an optimal set. Wieczorek and Simons [2005] elaborate

on how to choose an optimal windowing funtion. It is done by maximizing the value ψ, which

defines the ratio of energy of the function within the region of interest (whose area is given by Ωo)

to the energy over the entire sphere, given by

ψ =

∫

Ωo

h2 (Ω) dΩ

/

∫

Ω

h2 (Ω) dΩ. (2.33)
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The solution for ψ is attained by solving for the eigenvalues of a matrix given by Equation

13 in Wieczorek and Simons [2005]. The matrix ultimately depends on user-selected values for

the radius of the spherical cap, θo, along with the maximum degree of expansion, Nh. A Shannon

number given by No is defined as [Han and Ditmar , 2008]

No = (Nh + 1)
θo
π
. (2.34)

It is important to choose Nh and θo such that No is close to 2, since typically No − 1 gives the

number of well-concentrated windows.

Furthermore, one can calculate the localized degree-RMS using the calculated coefficients

C
y
nm and S

y
nm which describe ynm by [Han and Ditmar , 2008]

V y(n) =

√

√

√

√

n
∑

m=0

(C
y
nm)2 + (S

y
nm)2. (2.35)

Multiplying Equation 2.35 by rE gives a localized geoid degree error, similar in representation

to Equation 2.23. It is important to note that the range of permissible values for the localized

coefficients is limited to nmax − Nh; thus, the spatial resolution is decreased by the degree of

expansion of the windowing function. Additionally, degrees lower than Nh have the potential to

carry a significant bias, as discussed in Wieczorek and Simons [2005] in Section 5.1. As such,

it is optimal to choose small values for Nh, which means this technique is particularly useful for

examining mass variations with large spatial scales. It has also be shown to be effective in studying

earthquake signals [Han and Ditmar , 2008]. For more details on the spatiospectral localization

technique, the reader is referred to Wieczorek and Simons [2005]; Simons et al. [2006]; Han and

Ditmar [2008]; Han and Simons [2008].
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Simulation Procedure and Model Definitions

3.1 Introduction

Numerical simulations are necessary to compare the expected performance of each mission

architecture in recovering the gravity field. This chapter discusses measurement system errors

introduced in the simulation, the different hydrology, ice, tide, atmosphere, and ocean models

used in the simulations, and the simulation procedure itself. The simulations are performed using

GEODYN [Pavlis et al., 2010], a precise orbit determination and geodetic parameter estimation

software package, SOLVE [Ullman, 1997], a large linear systems solver, and solvepa, a modified

version of SOLVE. GEODYN and SOLVE have been provided by NASA Goddard Space Flight

Center while solvepa has been provided by the Department of Earth Observation and Space Systems

(DEOS) at TU Delft University.

3.2 Measurement System Errors

As discussed in Section 1.4, there are four primary sources of measurement error associated

with GRACE: the inter-satellite range measurement, the measurement of non-conservative forces

acting on the spacecraft, the measurement of the satellite positions, and the measurement of the

attitude of the spacecraft. This section discusses the errors assumed for each of these measurements

except for the measurement of the spacecraft attitude. It was not realized until recently [Horwath

et al., 2011; Bandikova et al., 2010] that this could be a limiting source of error, and as such, it has

been disregarded from this study.



www.manaraa.com

30

All simulations assume that the spacecraft fly drag-free and perform inter-satellite ranging

with a laser interferometer. Given this scenario, it has been shown that temporal aliasing errors

dominate the error budget [Loomis et al., 2010] (see also Figure 1.2). Hence, any improvements

that certain architectures offer over other architectures in this study can be attributed to lowering

the level of temporal aliasing errors, which is the ultimate goal of this study.

The laser interferometer instrument would replace the microwave ranging system currently

used by GRACE. The design and testing of a laser ranging system which could be used for a follow-

on mission has been completed through NASA’s Instrument Incubator Program. The instrument is

now classified as Technology Readiness Level (TRL) 6, meaning a prototype has been developed and

tested in a relevant environment. The dominant error source associated with the laser interferometer

is the laser frequency noise [Pierce et al., 2008].

Another major source of error is the measurement of non-gravitational forces acting on the

spacecraft which must be removed when processing the data. As mentioned in Section 1.3, GRACE

measures these forces using an accelerometer. Alternately, it has been proposed that future missions

could fly drag-free, such that non-conservative forces acting on the spacecraft are measured and

compensated for in real-time, similar to how the GOCE mission operates. This technique generally

results in lower residual accelerations versus having an accelerometer onboard the spacecraft. For

this study we assumed the use of drag-free technology similar to that of the GOCE mission.

Figure 3.1 shows the power spectrum of the laser frequency noise and errors from the drag-

free system plotted as range-rate displacements. Note that the orbit frequency shown in the plot

corresponds to an altitude of 300 km, and the maximum frequency in the recovered gravity field cor-

responds to degree 60. Errors from the drag-free system are shown to dominate at lower frequencies

while the laser frequency noise dominates at high frequencies.

The laser frequency noise shown in Figure 3.1 is derived primarily from laser frequency

stabilization work done for LISA [Mueller et al., December 2005]. For a 100 km separation distance

in spacecraft, Mueller et al. [December 2005] showed a frequency independent noise level of 10

nm/
√
Hz down to 0.001 Hz, and an inverse relationship to frequency for lower frequencies. More
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Figure 3.1: Power spectrum of measurement system errors used in simulations

recent experiments have shown laser performance more than an order of magnitude better than

Mueller et al. [December 2005] [Alnis et al., 2008]. We use a frequency independent laser frequency

noise in range of 5 nm/
√
Hz down to 0.001 Hz, and include the inverse correlation to frequency due

to thermal effects at low frequencies. This level of error is between Mueller et al. [December 2005]

and Alnis et al. [2008]. The drag-free error curve is taken such that the error is commensurate

with what GOCE experiences (Fehringer, 2010, personal communication), and is given by .01

nm/s2/
√
Hz. Note that this error is approximately two orders of magnitude higher than what is

targeted for the drag-free system being implemented on the LISA Pathfinder mission [Dolesi et al.,

2003].

This power spectrum of range-rate errors in Figure 3.1 has to be converted to the time domain

for the simulations. To accomplish this, a frequency spectrum is defined as

fl = l∆f, l = 1, 2, ..., N (3.1)

where

∆f =
1

2N∆t
(3.2)
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is the frequency sampling rate. In Equation 3.2, N is the number of data points in the time series,

and ∆t is the sampling rate in the time domain. Note that N is given by the desired time period,

T, divided by the sampling rate, ∆t. The frequency spectrum has been defined such that all

frequencies are positive.

The power spectral density functions shown in Figure 3.1 are then evaluated at each discrete

frequency, multiplied by the square root of T, and divided by the sampling rate, ∆t. We divide

by ∆t because we are using a discrete Fourier transform, and we multiply by T because the power

spectral density function has previously been divided by T. Each point is then multiplied by eiφ

where φ is a random phase in the range from [−π, π] [Ebisuzaki , 1997]. Since a real time series

is desired, only the real part of this is kept, and an inverse Fourier transform is performed to

convert it to the time-domain. Thus, a time-series of range-rate measurement errors is created.

The RMS of the time-series of simulated measurement errors is 4.72 nm/s. It should be mentioned

that the errors from the drag-free system dominate the error budget by approximately one order

of magnitude.

Furthermore, errors in the spacecraft position are introduced in the simulation by adding 1

cm RMS white noise to each directional component of the spacecraft position. This is the same

level of error that GRACE orbits are known to. This is a simplistic method of introducing error in

GPS measurements without the need to model all GPS satellites and estimate parameters such as

clock biases and drifts, as is necessary with the real GRACE data.

3.3 Model Definitions and Aliasing Errors

Since GRACE requires on average 30 days of data for global coverage (in reality this number

depends on the desired spatial resolution and the evolution of the orbit since it is a non-repeating

groundtrack), mass variations with time scales shorter than 60 days are undersampled via the

Nyquist Sampling Theorum. There are six primary sources for high frequency mass variations

within the Earth system: tides(ocean and atmosphere), atmosphere, ocean, continental hydrology,

and ice mass variations. The non-tidal high frequency mass variations in the atmosphere and ocean
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are caused by weather systems on Earth (i.e. redistribution of atmospheric pressure).

One should think of GRACE as giving a picture of total mass movement about the Earth.

Thus, a hydrologist who is only interested in how hydrology changes over time, will want to remove

the effects of tides and atmosphere and ocean. For GRACE data, these unwanted short period

mass variations are accounted for by using models fit to atmosphere and ocean observations, and

subtracting them from the GRACE estimates. Any errors in these models then alias into the 30-day

gravity field solutions. Aliasing is considered to be one of the largest error sources for the GRACE

mission [Thompson et al., 2004; Han et al., 2004; Zenner et al., 2010]. There are several models

available which can be used to remove the effects of high frequency mass variations. We assume

that the difference between these models is representative of their error.

Atmosphere/ocean (AOD) models (independent of tides) are created by combining both

an atmospheric and an ocean model [Flechtner , 2007]. The two different atmospheric models

which are used in this study are the 3-hr European Center for Medium-range Weather Forecast

(ECMWF) surface pressure fields, and the 6-hr National Center for Environmental Predictions

(NCEP) Reanalysis fields [Kalnay et al., 1996]. The two different ocean models which are used

in this study are the 6-hr baroclinic Ocean Model for Circulation and Tides (OMCT) which is

currently used as a dealiasing product for GRACE, and the 6-hr MOG2D model [Carrère and

Lyard , 2003], both of which are forced by ECMWF surface pressure. These models are represented

via spherical harmonic coefficients. In the simulations, the difference between (ECWMF + OMCT)

and (NCEP + MOG2D) is representative of the aliasing error given by AOD models.

The two tide models used in this study are FES2004 and GOT00. The Finite Element

Solution (FES2004) tide model is a hydrodynamic model that is computed using tide gauge data

and TOPEX/Poseiden satellite altimetry data [Lyard et al., 2006]. The Goddard Ocean Tide

(GOT) model is computed using Topex/Poseiden data and is supplemented in shallow seas and

polar seas (latitudes above 66o) by 81 35-day cycles of ERS-1 and ERS-2 data and uses FES94

as an apriori model [Ray , 1999]. In the simulation, the difference between these tide models is

considered to be the magnitude of the error in the tide models.
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The hydrology model that is used in the simulations is the 3-hr Global Land Data Assimilation

System (GLDAS)/Noah land-surface model [Rodell et al., 2004]. Ice mass variations in Greenland

and Antarctica are defined via a 6-hr ESA ice model, and was provided by the European Space

Agency [van Dam et al., 2008]. There is only one hydrology and one ice model, as these are usually

considered to be the signals of interest; therefore we try to recover hydrology and ice rather than

using a second model to remove their effects. Temporal aliasing errors from hydrology and ice are

introduced in the simulations by mass variations which have a frequency greater than twice the

sampling frequency of the mission; i.e. undersampling these signals. It should be noted that ocean

bottom pressure (OBP) is also considered to be a signal of interest. It can be recovered simply by

treating NCEP and MOG2D as forward models and calculating corrections made to them during

the estimation process.

Figure 3.2 shows the power in the GLDAS hydrology model and ESA ice model in terms

of geoid height along with the power of the difference between two AOD models (this shows the

power in the aliasing error due to the AOD models). Also plotted is the absolute power in the

AOD signal (ECMWF + OMCT). Note that the power in the tide errors is not shown on this plot

because ocean tides are not traditionally represented in terms of spherical harmonic coefficients,

and it is difficult to quantify the magnitude of the error in terms of geoid height. However, Ray and

Luthcke [2006] performed this analysis and quantified the tide model error (defined as the difference

between between the GOT00.2 tide model and the TPXO.6 tide model in their study) in terms of

geoid height. The magnitude of the tide model error in Ray and Luthcke [2006] is lower than the

AOD error in Figure 3.2 until approximately degree 20, where the tide model error then dominates.

Figure 3.2 shows that at approximately degree 45, the magnitude of the difference between

two AOD models becomes larger than the magnitude of one of the AOD models. This means that

for degrees higher than 45, the AOD model can be considered to be nearly 100% error. The power

of the hydrology and ice signals has only slightly more power than the AOD error introduced. This

indicates that if one wants to recover hydrology and ice, it may be difficult, as the signal to noise

ratio is expected to be low. However, this is perhaps an unfair comparison as hydrology and ice
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Figure 3.2: Comparison of hydrology signal power and AOD error power

models are constrained to only the continents, so it represents power only over the land, while the

AOD error is for the entire globe. Furthermore, it should be noted that the capability of a mission

to detect mass variations at a particular location on the globe will depend on the strength of the

signal and error in that particular region, not the signal and error averaged over the entire globe.

This is why it is important to analyze results on a regional scale, and not rely completely on global

metrics. It should additionally be mentioned that a spatial plot of the AOD errors reveals that

most of the error occurs in high latitude regions, particularly in Antarctica, where the data used

as input to create the models are more sparse.

3.4 Numerical Simulation Procedure

While computationally expensive and time-consuming, numerical simulations provide the ca-

pability of estimating large gravity fields while including a variety of force models. To compare the

ability of various mission architectures in recovering the gravity field, numerical simulations are

necessary. All simulations are run using GEODYN [Pavlis et al., 2010] (a precise orbit determi-

nation and geodetic parameter software package), SOLVE [Ullman, 1997] (a large linear systems
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solve), and solvepa, a modified version of SOLVE. GEODYN and SOLVE have been provided by

NASA Goddard Space Flight Center and solvepa has been provided by the Department of Earth

Observation and Space Systems (DEOS) at TU Delft. All computations are performed using a

cluster of ten Apple Xserve processors with one processor designated to be the headnode and the

other nine processors designated as slave nodes. Each Xserve has a Quad Xenon processor, allowing

for 36 jobs to be processed simultaneously through the use of Xgrid for the distributed computing.

The data is stored in a 7 TB Xserve RAID storage device.

GEODYN implements an iterative weighted least squares estimation algorithm to solve for

spherical harmonic coefficients. The least squares algorithm is given by[Tapley et al., 2004b]

Ax̂o = b (3.3)

with

A = HTWH + P
−1

o (3.4)

and

b = HTWy + P
−1

o xo. (3.5)

where

x̂o = state deviation vector

y = observation deviation vector

xo = a priori estimate of state deviation vector

H = matrix of partial derivatives relating the state to the observations

W = weighting matrix of observations

P o = apriori covariance matrix containing weighting information for state deviation vector.

A is defined as the information matrix, which is the inverse of the covariance matrix that

contains variance information on the state. Note that in our case, the state deviation vector consists

of the state of the spacecraft along with the spherical harmonic coefficients that are being solved
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for. While we solve for the gravity field in terms of spherical harmonic coefficients, there are other

sets of basis functions and other processing methodologies which have been successfully used to

characterize gravity field variations. For example several groups have used mass concentration

blocks with spatial and temporal constraints to solve for the gravity field [Rowlands et al., 2010],

while other groups have used wavelet functions [Fengler et al., 2007]. While other methods have

proved useful, all gravity solutions presented in this work have been solved for in terms of spherical

harmonic coefficients.

The numerical simulation consists of a truth and a nominal case which differ from each

other. The truth case represents the truth; that is, it represents the actual GRACE follow-on

mission with measurement system errors as discussed in Section 3.2. The nominal case represents

our best guess of the GRACE follow-on mission, with appropriate dealiasing models as discussed

in Section 3.3. Table 3.1 outlines the models that are input to the truth and nominal cases. Note

that the simulation defined in Table 3.1 is used to recover hydrology and ice mass variations; that

is, the goal of the mission is to quantify how well these signals can be recovered in the presence

of measurement errors and errors in atmospheric, ocean, and tide models, given by the difference

between the two sets of models. When differencing the two sets of atmosphere and ocean models

over a particular timespan there will be a static as well as a time variable part. Since we are

only interested in including the time variable part of the model differences, the static part is

calculated and subtracted from to the mass estimates during the post-processing. If this step

were not included, then the recovered hydrology and ice signals would have a bias equal to the

static part of the difference between the atmosphere and ocean models. It should be noted that

ocean bottom pressure variations can still be estimated using the simulation definition in Table

3.1; one simply treats the NCEP and MOG2D models as forward models and calculates corrections

to them. EIGEN-GL04C is a static gravity field model which was created using GRACE and

Laser Geodynamics Satellite (LAGEOS) data along with surface data, and was produced by Geo-

Forschungs-Zentrum (GFZ) in Potsdam, Germany and Groupe de Recherche de Geodesie Spatiale

(GRGS), in Toulouse, France [Förste et al., 2008]. Note that errors in the static gravity field model
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are neglected.

Models Truth Nominal

Static gravity field EIGEN-GL04C EIGEN-GL04C

Ocean tide model FES2004 GOT00

Atmospheric model ECMWF NCEP

Ocean model OMCT MOG2D

Hydrological model GLDAS none

Ice model ESA none

Table 3.1: Simulation and model definitions

The numerical simulation is intiated by running the truth case with the models listed in

Table 3.1. The epoch elements of the spacecraft are integrated using the appropriate models, and

a set of range-rate measurements is generated in five-second intervals. Note that the force models

used for integration include only those listed in Table 3.1, with each model expressed to degree

and order 100, with the exception of NCEP and MOG2D which are only defined to degree 72. All

other forcing parameters are turned off (i.e. no atmospheric drag, solar radiation pressure, Earth

radiation pressure) as it was assumed the mission will fly drag-free so these non-conservative forces

are accounted for. N-body gravitational effects from the Sun, moon, and other planets, which

are conservative forces are also not modelled, as these are well known forcing paramters and their

effect is typically removed prior to gravity estimation. Any error in the ephemeris of the other

planets is assumed to have a neglible impact on the gravity field estimation. The integration is

performed in one-day arcs; thus, if it is desired to simulate one month of data, we end up with

30 one-day sets of range-rate measurements. The measurement noise associated with the laser

interferometer and the drag-free system, as described in Section 3.2, is then added to the set of

truth measurements. Additionally, positions of the spacecraft are written every 10 seconds to

simulate GPS measurements, and a white noise distribution of 1-cm RMS in magnitude is added

to each component of the spacecraft’s position to simulate the error in the GPS measurements.

The next step of the process involves integrating the satellites again, only through the set

of nominal force models as described in Table 3.1. Again, range-rate measurements are generated
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in five-second invervals over one day and spacecraft position measurements are generated every 10

seconds over the day. This becomes the nominal set of measurements, and by differencing the truth

and nominal measurements, we are left with a set of range-rate residuals and position residuals.

Both sets of residuals are used to solve for corrections to the spacecraft state only. This step is

included so the state of the spacecraft can be adjusted to compensate for the change in energy of

the system (given by the change in force models), and makes for a more realistic simulation.

The final step is the data reduction step, in which the spacecraft are again integrated through

the set of nominal force models, only with the new spacecraft position estimates that were generated

in the previous step, to form a new set of range-rate measurements. We now use only the newly

generated set of range-rate residuals to gain the normal equations (given by Equation 3.3) for

each one-day arc, to estimate corrections to both the spacecraft state and the spherical harmonic

coefficients. The spacecraft state parameters are converted to baseline elements via [Rowlands et al.,

2002], and nine of the twelve parameters are constrained during the estimation process. This allows

us to avoid introducing spacecraft position measurements during the estimation process; hence

relative weighting issues between the two data types are avoided. Assuming a 30-day solution is

desired, SOLVE (or solvepa) is used to combine all 30 days of data into one solution for the gravity

field. SOLVE uses a Cholesky decomposition to compute the inverse of the large information matrix

given in Equation 3.4. The advantage of using a Cholesky decomposition is that it avoids inverting

the information matrix, thus gaining considerable numerical accuracy in the estimation process.

Note that no apriori information is introduced for the spherical harmonic coefficients during the

estimation.

An alternate methodology was also explored for the data reduction step in which both the

range-rate residuals and spacecraft position residuals are used to solve for the gravity field and

corrections to the spacecraft state. This step requires that the range-rate measurements be weighted

more heavily than the spacecraft position measurements (we used a weight of 1 cm for the GPS

measurements and 1 nm for the range-rate measurements). Additionally, the state of the spacecraft

are kept in cartesian space during this process. Both processes have been tested and nearly identical
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results are obtained. The one discrepancy is that sometimes an unrealistic estimate of J2 is produced

when using both spacecraft position measurements and range-rate measurements to estimate the

gravity field; thus a light constraint must be applied to the J2 coefficient. Figure 3.3 plots the

geoid height error obtained from a simulation of a hypothetical mission, with measurement system

errors and aliasing errors from AOD and tides models. Figure 3.3 compares the results from

processing spacecraft position and range-rate measurements using cartesian elements for the state

of the spacecraft, to processing only range-rate measurements while using baseline parameters for

the state of the spacecraft. It is seen that both methodologies produce nearly identical results. In

order to be consistent, the results in this study have been produced using only range-rate residuals,

to avoid optimizing the relative weighting between the two measurement types.
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Figure 3.3: Geoid height error for a hypothetical follow-on mission testing two solution strategies

One other caveat with the data processing should be mentioned. Arc lengths of one day

were used when processing the data to be consistent with the processing performed at CSR, GFZ,

JPL, and GFSC. We also explored the option of having shorter arc lengths of 6 hours and 12

hours. Results indicate that the shorter arc lengths actually result in more accurate estimates of

the gravity field. This is presumably due to a better fit of the satellite orbits as well as a reduction
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in the amount that temporal aliasing errors are accumulated. However, this study did not attempt

to optimize the arc length of the data, and due to increased processing time associated with shorter

arcs, we chose to process daily arcs to be consistent with other processing centers. This can be

considered a topic for future research, however.
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Chapter 4

Estimating High Frequency/Low Resolution Gravity Fields

4.1 Introduction

As disussed in Section 1.4, temporal aliasing errors can be reduced via three methods: (1) in-

creasing the sampling frequency of the mission, (2) improving the dealiasing products (atmosphere,

ocean, tides models), and (3) co-estimating parameters which vary at high frequencies. This chap-

ter focuses on a combination of (1) and (3), exploring the feasibility of estimating low resolution

gravity fields at high frequencies simultaneously during the inversion process to reduce the effect

of temporal aliasing errors from mass variations with large spatial scales. The ultimate goal is to

obtain a gravity solution with superior spatial resolution over what a typical post-processed (after

destriping and smoothing via Swenson and Wahr [2006]) gravity solution would provide. We ex-

plore the potential of this estimation scheme for three possible follow-on mission architectures: a

single pair of polar orbiting satellites similar to GRACE, two pairs of polar orbiting satellites, and

a polar pair of satellites coupled with a lower inclined pair of satellites. The rationale for selecting

these architectures for comparison is straight-forward, as they represent a low-cost, mid-cost, and

high-cost option, respectively, for a future gravity measuring mission. Since temporal aliasing errors

are expected to dominate the error budget of future missions, a relatively simple way to reduce

these errors is to sample more frequently by adding a second pair of satellites, hence the rationale

for examining the second two cases. The third case is of particular interest, as the addition of a

lower inclined pair provides East-West information and is anticipated to reduce longitudinal strip-

ing in the solutions, as discussed in Bender et al. [2008]. However, this option is higher cost, due to
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the requirement of two launch vehicles, and higher risk, as there would be a polar-gap in coverage

should the polar pair of satellites fail.

4.2 Motivation: Reducing AOD Errors

Figure 1.2 shows that the dominant source of temporal aliasing error is due to mismodelling

of atmosphere and ocean signals (AOD error). Thus, it is desirable to first focus on reducing these

errors. Figure 3.2 shows that the majority of the AOD error is at long wavelengths, or low degrees.

Since much less data are needed to estimate a gravity field to low degree and order rather than

out to high degree and order (as GRACE does), then one can think of estimating low degree and

order gravity fields at short time intervals to directly estimate errors due to atmosphere and ocean

models. In theory, this should mitigate the effect of temporal aliasing errors on the gravity solution.

The question now arises as to what the optimal frequency is to estimate a low degree and

order gravity field to reduce aliasing effects. This will depend on the satellite groundtrack coverage

(discussed in Section 4.4) as well as the frequency content of the AOD error. To better understand

the latter, Empirical Orthogonal Functions (EOFs) are used to analyze the time series of the

atmosphere and ocean models. Figure 4.1 shows the spatial and temporal parts of the first mode

expressed in cm of equivalent water height (EWH), which represents 67% of the variance in the

model errors over a particular 19-day timespan.

The spatial part of the first mode shows that most of the error is concentrated in high latitude

regions, while the time series in Figure 4.1 seems to have a dominant period near 2-3 days. To

confirm this, a Fourier analysis is performed on the time series in Figure 4.1, and the frequency

content of the error is shown in Figure 4.2. Note that the AOD error has been expressed in terms of

period, rather than frequency in this plot. Two dotted lines are plotted and labeled, with everything

to the right of the dotted line representing the amount of signal that would be recovered by making

one-day and two-day estimates of the gravity field, respectively.

Figure 4.2 shows that nearly all of the power in the AOD error has periods greater than two

days. There is a peak in the power at periods of 2, 4, and 8 days, increasing in magnitude at larger
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Figure 4.1: Spatial (top) and temporal (bottom) parts of the first mode of the AOD error over a
19-day timespan expressed in cm of EWH

periods. This figure suggests that making daily estimates of the gravity field will provide the largest

reduction in temporal aliasing errors, as there is a substantial amount of power between periods of

two days and four days; however, two-day estimates of the gravity field should capture much of the

variability as well. The signal with periods around 2-4 days is most likely due to mismodelling of

fronts and extratropical storms, which typically have periods in this range [von Storch and Zwiers,

1999]. While only a single 19-day time span is shown in Figure 4.1, the AOD error was analyzed

for other time periods as well. Analyses for other time spans reached similar conclusions as stated

above.

4.3 Estimation Process

As discussed in Section 3.4, SOLVE (or solvepa) is used to combine the normal equations for

daily arcs of data to gain a final multi-day estimate of the gravity field. SOLVE specifices between

arc parameters and global parameters; the former being parameters which change throughout the
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Figure 4.2: Frequency content of the first EOF of the AOD error displayed in Figure 4.1

simulation (such as the position and velocity of the spacecraft), and the latter being parameters

that are static throughout the simulation (such as the spherical harmonic coefficients which define

the gravity field). The arc parameters are estimated each arc (in this case, each day), while the

global parameters are estimated only once for the duration of the simulation. SOLVE was modified

to allow the spherical harmonic coefficients to be defined as arc parameters, meaning they would

then be estimated each arc along with the state of the spacecraft. This modified version of SOLVE

is referred to as solvepa, and was provided by DEOS at TU Delft University. While we use spherical

harmonic functions to estimate high frequency gravity field variations, there may be another set of

basis functions tailored to the estimation of temporal aliasing errors, such as mascon parameters

or wavelets. However, alternate basis functions (aside from spherical harmonic functions) were not

included in this study.

The mathematical description of the above process is given in the ensuing derivation. Equa-

tion 3.3 can be partitioned to keep arc parameters and global parameters separate during the

estimation process. This partitioning leads to


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
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, (4.1)

where the subscript 1 represents the arc parameters and the subscript 2 represents the global
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parameters. One can then multiply the first row of Equation 4.1 by A−1
11 and subtract A21A

−1
11

multiplied by the first row from the second row, leading to







A−1
11 A11 A−1

11 A12

A21 −A21A
−1
11 A11 A22 −A21A

−1
11 A12













x1

x2






=







A−1
11 b1

b2 −A21A
−1
11 b1






, (4.2)

which reduces to
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when defining A22 = A22 −A21A
−1
11
A12.

Solving this system of equations for the arc parameters gives

x1 = A−1
11

[(

I +A12A
−1

22 A21A
−1
11

)

b1 −A12A
−1

22 b2

]

. (4.4)

It is in this process where the user can define the low degree and order part of the gravity field

as arc parameters, and solve for them each arc. Once this process is completed, assuming 19 days of

data are processed in 1-day arcs, the user is left with 19 1-day estimates of the gravity field to low

degree and order, and one 19-day estimate of the gravity field for the higher degrees. The benefit

to this approach is obvious: the daily low-degree gravity field estimates provide a place for high

frequency mass variations to be estimated; thus, reducing temporal aliasing errors and improving

the higher degrees. At this point, the final data product released to the community could simply

be a 19-day average of higher degree coefficients and daily solutions of lower degree coefficients.

These daily solutions with low spatial resolution could aid in improving atmospheric models, and

possibly be beneficial to the oceanography community as well, as many of these signals have large

spatial scales with high frequencies.

However, the primary goal of this project is to increase the spatial resolution (better de-

termination of higher degrees) of the final 19-day gravity field estimate. As such, we are not as

interested in the daily solutions themselves, but, for simplicity, desire a data product with a 19-day

solution for all coefficients. We gain a single 19-day estimate of the low degrees by running SOLVE

once more (specifying only the spacecraft state as arc parameters), with the higher degrees of the
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gravity field constrained such that they are not allowed to vary, to then gain a 19-day estimate of

the low degree part of the solution. Alternately, one could simply average the 19 1-day low degree

solutions together to gain a 19-day estimate of the low degrees, leading to near equivalent results.

It should be noted that this method of estimation is fundamentally different than that de-

scribed in Kurtenbach et al. [2009]. This method provides daily estimates of the gravity field to low

degree and order which are uncorrelated from each other. The daily solutions gained in Kurtenbach

et al. [2009], alternately, are correlated between each other due to the Kalman filter approach and

are biased towards an a apriori hydrology model. Their approach allows for much greater spatial

resolution in the daily solutions than what is provided here. Again, it should be stressed that the

primary goal of this project is not to gain daily solutions, but to improve estimates of high de-

grees terms by simultaneously estimating low resolution gravity fields at a high frequency to reduce

temporal aliasing errors.

4.4 Groundtrack coverage

As mentioned in Section 4.2, the ability to estimate a low degree and order gravity field at

a particular frequency is a strong function of the groundtrack pattern of the satellite. According

to the Columbo-Nyquist [Colombo, 1984] rule, the maximum resolvable degree in the gravity field

is equal to half of the number of revolutions of the pair of satellites, given homogeneous spacing

between the tracks. This rule has recently been revised in Visser et al. [2011], to state that the

Colombo-Nyquist rule holds for gravity solutions that are homogeneous as a function of longitude.

However, solutions are possible when estimating to degrees larger than half the number of orbital

revolutions; they are just not guaranteed to be homogeneous in the longitudinal direction. In fact,

the maximum resolvable degree for low-low satellite-to-satellite tracking is equal to approximately

twice the number of orbital revolutions. Thus, in theory, given a polar pair of satellites that

completes sixteen revolutions in one day, one should be able to solve for a gravity field out to

degree and order 32 or so. The quality of the solutions will not, however, be homogeneous as a

function of longitude. For a homogeneous solution in longitude, the maximum resolvable degree
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would be equal to 8.

For the purposes of validating this process, three mission architectures are considered: a

single pair of polar orbiting satellites, two pairs of satellites both in polar orbits, and a pair of

satellites in a polar orbit coupled with a pair of satellites in a lower inclined orbit. For the case of a

single pair of satellites in a polar orbit, the satellites are separated by 100 km at an altitude of 315

km in an 18.95-day repeating groundtrack. For the case of having two pairs of satellites in polar

orbits, a second pair of satellites is added to the previously mentioned pair, only offset in the node

by approximately 180o (see Equation 5.15 for exact offset). This type of configuration ensures that

the second pair of satellites will cross near the equator in the same location that the first pair of

satellites did approximately one-half of a revolution later in time, and was found to be optimal,

as discussed in Section 5.4.5. Finally, for the case of having a lower inclined pair and a polar pair

of satellites, a pair of satellites at an altitude of 291 km and an inclination of 76o in an 18.85-day

repeating groundtrack is added to the pair of polar orbiting satellites. For the simulations, 19 days

of data are processed to estimate a 100x100 gravity field. The repeat periods of the satellites will

be referred to as 19 days for the remainder of the dissertation, since both repeat periods are nearest

to this integer.

The polar pair of satellites described above completes 15.86 revolutions in one day, meaning

that one should be able to estimate a homogeneous 8x8 gravity field using one day of data, while

two pairs enables the user to estimate close to a 16x16 gravity field in one day, provided interleaved

groundtracks. Figure 4.3 shows the groundtracks over one day for the polar pair of satellites alone,

the two pairs of polar satellites, and the polar pair of satellites coupled with the lower inclined pair

of satellites. This figure shows that over one full day, each case has fairly homogeneous coverage

over the Earth, lending itself well to making daily estimates of the gravity field to low degree and

order.

While Figure 4.3 shows the groundtracks of the satellites over one day, it is also interesting to

consider the coverage over the Earth for time scales both shorter and longer than this. It is easily

seen that one day is a lower limit on the amount of time it takes to provide homogeneous coverage
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Figure 4.3: Groundtracks over one day for a single pair of polar orbiting satellites (top), two pairs
of polar orbiting satellites (middle), and a polar pair of satellites coupled with a lower inclined pair
of satellites (bottom)

over the Earth, since it takes a full day for the Earth to rotate 360o underneath the satellites. To

gain homogeneous coverage on time scales shorter than one day, multiple pairs of polar satellites

would have to be used in a proper configuration. Since the frequency content of the AOD error

shown in Figure 4.2 suggests that there would be minimal benefit in estimating gravity fields at

time scales shorter than one day, this case was not considered in the dissertation.

If one thinks of estimating low degree and order gravity fields using more than one day

of data, for example two days of data, the most improvement in the solution will be seen if the

groundtracks provide homogeneous coverage over two days. For this criterion to be met, the

satellites must perform an integer number of revolutions over one day plus one half of another
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revolution, i.e. near 15.5 revolutions in one day. This guarantees that homogeneous coverage over

two days would then exist, as the groundtracks on the second day would fill in the gaps between

the groundtracks on the first day. Simple orbital mechanics quickly shows that for this criterion to

be met, the satellites would need to be flown at an altitude near 420 km.

Given the nature of the groundtracks of the satellites, coupled with the fact that the AOD

temporal aliasing error has substantial power with 2-4 day periods, it is expected that estimating

low degree and order gravity fields with daily resolution will provide the best results.

4.5 Results

To analyze the effectiveness of estimating low resolution gravity fields at a high frequency,

the quality of the low resolution gravity fields is studied along with the benefit that these estimates

provide to the final gravity solution. The following results show the quality of both one-day and

two-day estimates for the three cases examined. Then, improvements in determining hydrology,

ice mass variations, and ocean bottom pressure signals that estimating the high frequency gravity

fields provides is studied. The degree of the high frequency estimate of the gravity field is also

optimized.

4.5.1 Quality of the Estimated High Frequency Gravity Fields

4.5.1.1 Daily Estimates

Figure 4.4 shows the quality of the daily estimates for one pair of satellites estimating a 6x6

gravity field (top), two pairs of polar orbiting satellites estimating a 14x14 gravity field (middle),

and a polar pair coupled with a lower inclined pair of satellites estimating a 14x14 gravity field

(bottom) each day. Estimating the fields out to degree and order 6 and 14, respectively, were

chosen to ensure gravity solutions that are homogeneous as a function of longitude, in accordance

with the Colombo-Nyquist rule described in Section 4.4. The plots show a series of truth and

recovered signals for different days spaced nine days apart, reading left to right sequentially in
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time with results from Jan. 1, 2003; Jan. 10, 2003; and Jan. 19, 2003 shown. The top row of

plots is the difference between the truth and nominal signals. For this case, the ocean tides and

ice signals have been removed from the simulation in Table 3.1 to focus solely on the AOD error

along with undersampling of hydrology. Hence, the top plots represent a one-day average of the

GLDAS hydrology signal added to the atmosphere and ocean error, defined as the one-day average

of (ECMWF + OMCT) - (NCEP + MOG2D). This is the temporal aliasing error that we are

trying to directly estimate. The bottom row of plots shows the recovered signal for each selected

day. In essence, one is hoping to match the top and bottom plots, thus giving a good estimate of

the temporal aliasing error every day out to low degree and order.

There are several things to notice from Figure 4.4. First, as the truth signals increase in

time from left to right, one can see how much temporal variability there is in hydrology and the

AOD error over 19 days. If these signals were static over the 19-day timespan, then it would be

simple to estimate them. The variability is what leads to a degradation in the gravity solutions.

Next, it is easily seen that one pair of satellites does a poor job of making daily estimates of the

gravity field to degree and order six. While some of the spatial patterns in the truth signals are

recovered decently in the polar regions (where the coverage is more dense), the solutions degrade

substantially over the equatorial regions. When another pair of polar satellites is added, doubling

the number of observations, it is seen that the two polar pairs together do a fairly decent job of

estimating the gravity field each day out to degree and order 14. When a lower inclined pair, rather

than a second polar pair, is added to the polar pair of satellites, it is seen that the quality of the

daily estimates improves even more. This is due to the addition of East-West information that the

lower inclined pair adds to the solution.

Table 4.1 gives the spatial RMS of the power in the signal, along with the spatial RMS of

the errors in the recovered signal for estimating daily gravity fields to different degree and order for

both one pair and two pairs of satellites. The spatial RMS of the error is calculated by differencing

the spatial plots of the truth and recovered signals, and calculating an RMS of the spatial plot of

errors, as discussed in Section 2.3.1.2. All RMS values are expressed in terms of cm of equivalent
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Figure 4.4: There are three sets of results in this figure: one pair of satellites estimating a daily
6x6 (top), two pairs of polar orbiting satellites estimating a daily 14x14 (middle), and two pairs of
satellites (one polar and one lower inclined) estimating a daily 14x14 (bottom) gravity field model.
The top row of plots shows the difference between the truth and nominal cases; for this example it
is the GLDAS hydrology signal plus the AOD aliasing error. Hence, the top row of plots represents
the signals we are trying to recover with the daily estimates. The bottom row of plots shows the
recovered signals for each day. The plots are arranged from left to right sequentially for different
days spaced 9 days apart: Jan. 1, 2003; Jan. 10, 2003; and Jan. 19, 2003. Units are in cm of
equivalent water height (EWH).
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water height (EWH). The RMS values were obtained by averaging the RMS values for each day

over the 19-day time span. Daily estimates beyond degree 22 are not shown as the results tend to

degrade past this point. The RMS values are not shown for the one pair case beyond degree 14, as

the errors were too high to be near reasonable.

Degree of Signal Error RMS
Daily Estimate RMS One Pair Two Polar Polar Pair +

Pairs Lower Inc. Pair

6 1.68 1.77 0.76 0.81

10 2.20 2.07 0.77 0.75

14 2.44 3.04 1.32 0.86

18 2.58 – 1.32 0.61

22 2.76 – 3.18 0.74

Table 4.1: 19-day average of the daily RMS values of signal and error for the cases of one pair
and two pairs of satellites for different degrees of a daily gravity field estimate. Units are in cm of
EWH.

Table 4.1 shows that given a single pair of polar orbiting satellites, the signal to noise ratio

is nearly always less than one no matter what degree the daily gravity field is estimated to. This

shows the inability of a single pair of polar orbiting satellites to make a low degree and order

estimate of the gravity field with only one day of measurements. Two pairs of polar orbiting

satellites are capable of estimating daily gravity fields out to degree 18 or so, but when the solution

extends to degree 22, the signal to noise ratio drops below one. At this point, the gravity solution

is not guaranteed to be homogeneous as a function of longitude. The case of having a polar pair

of satellites coupled with a lower inclined pair of satellites provides the best results, with daily

estimates of the gravity field beyond degree 10 having much greater accuracy than the case of two

polar pairs. This result shows the benefit of having East-West information in the gravity solution

in addition to the North-South information that the polar pair of satellites provides.
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4.5.1.2 Quality of Two-Day Estimates

Results from Section 4.5.1.1 showed the inability of one pair of satellites to estimate a low

degree and order gravity field each day. While estimating a gravity field at daily intervals is pre-

ferred, Figure 4.2 indicates that making two-day estimates of the gravity field could also provide

a reduction in the level of temporal aliasing errors. The number of measurements that are accu-

mulated over two days with a single pair of satellites will equal the number of measurements that

two pairs of satellites provide over one day. Thus, it is hypothesized that one pair of satellites will

be able to estimate a low degree and order gravity field every two days with error levels similar to

those realized by two pairs of satellites over one day. Since two pairs of satellites show sufficient

ability to estimate a low degree and order gravity field over one day, the case of having two pairs

of satellites making two-day gravity field estimates is not explored in this section.

One limitation with performing estimates every two days is the fact that the groundtracks

are not guaranteed to be near-homogeneous, as discussed in Section 4.4. Thus, two architectures

are examined to explore the benefit of making two-day estimates of the gravity field using a single

pair of polar orbiting satellites. The first is using the same pair of satellites as was used in Section

4.5.1.1, at 315 km altitude, performing 15.86 revolutions in one day. This guarantees inhomogeneous

coverage in the groundtrack pattern over two days. The second architecture examined is a polar

pair of satellites in a 19-day repeating groundtrack, but at 421 km altitude, performing 15.49

revolutions per day. This configuration provides near-homogeneous coverage over two days. Figure

4.5 shows the groundtracks of both cases plotted over two days. The difference in homogeneity of the

groundtracks between the two cases is easily seen. It is expected that having homogeneous coverage,

albeit at a higher altitude, should provide improved results in making the two-day estimates.

To analyze the ability of both cases to accurately estimate a low degree and order gravity

field every two days, ten two-day estimates were analyzed, for a total of 20 days of data. Table

4.2 shows the 20-day average of the two-day signal and error RMS values for the higher and lower

altitude cases in making two-day estimates of the gravity field to different degrees. The RMS values
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Figure 4.5: Groundtracks over two days for a single pair of polar orbiting satellites at 315 km
altitude (left), and a polar pair of satellites at 421 km altitude (right)

are expressed in cm of EWH.

The first thing that can be noticed from the results in Table 4.2 is how much difference having

two days of data makes in the ability to estimate a low degree and order gravity field. Comparing

the one-pair, 315 km altitude results with those from Table 4.1 using only one day of data to make

the estimates shows the improvement that adding a second day of data provides. Furthermore,

as expected, the results from the pair of satellites at 421 km altitude, with near-homogeneous

groundtrack coverage over two days, are better than the results from the pair of satellites at 315

km with non-homogeneous coverage over two days, despite being at a higher altitude. This attests

to the benefit in having near-homogeneous coverage over the time span of interest. Finally, when

the results from one pair of satellites at 421 km altitude using two days of data are compared with

the results from two polar pairs of satellites using one day of data, shown in Table 4.1, only slight

differences are seen due to the different spatio-temporal sampling characteristics of the two cases.

Again, it is seen that making daily estimates using a lower inclined pair coupled with a polar pair

provides the most accurate estimates of the low resolution gravity fields.

It should also be noted that other frequencies were explored for making the low resolution

estimates of the gravity field besides just one and two days. Results showed that daily solutions

provided the most accurate results, which was expected from the discussions in Sections 4.2 and

4.4.
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Degree of Signal Error RMS

Two-Day Estimates RMS One Pair/315 km One Pair/421 km

6 1.65 1.36 0.87

10 2.15 1.36 0.97

14 2.38 1.65 1.17

18 2.51 1.57 1.23

22 2.67 2.10 2.16

Table 4.2: 20-day average of the two-day RMS values of signal and error for the cases of one pair
of satellites at 315 km and 421 km altitude for different degrees of a two-day gravity field estimate.
Units are in cm of EWH.

4.5.2 Improvements in Recovering Geophysical Signals

The primary purpose of estimating high frequency low degree and order gravity fields is to

provide improved spatial resolution in the final multi-day gravity field estimate by reducing the

effect of temporal aliasing errors. It still remains to be seen what effect estimating high frequency

gravity fields has on the final solution, as well as what degree of the estimate is optimal. This

section will address both of these issues for all three cases examined. It should be noted that the

remainder of the results include ocean tide aliasing errors as well as an ice model, as outlined in

Table 3.1, for a more comprehensive analysis. All analyses in this section are performed on a global

scale, i.e. examining signals and errors globally.

4.5.2.1 One Pair of Satellites

Sections 4.5.1.1 and 4.5.1.2 showed that one pair of satellites is not capable of providing

accurate low degree and order estimates of the gravity field on a daily time scale. However, when

measurements are accumulated for two days, the situation improves considerably. Thus, results in

this section will focus on the ability of one pair of satellites to recover geophysical signals of interest

while estimating low degree and order gravity fields every two days.

Table 4.3 shows the spatial RMS of the errors in recovering hydrology signals, ice mass

variations (defined as Greenland and Antarctica), and ocean bottom pressure (OBP) signals, over

20 days, for one pair of satellites at 421 km altitude making two-day estimates of the gravity field
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to low degree and order. The results are obtained from differencing the truth and recovered signals

spatially, truncated at degree and order 60. This truncation was performed as degrees higher than

60 were deemed to have too much noise to be reasonable for all cases considered. All numbers are

expressed in cm of EWH. Note that the power of the hydrology, ice, and OBP signals are given

under each label, and are 4.75 cm, 2.08 cm, and 2.67 cm, respectively.

Degree of Hydrology Ice OBP
Two-Day Estimates RMS = 4.75 RMS = 2.08 RMS = 2.67

none 26.28 31.02 29.08

6 17.70 11.90 19.52

10 21.19 11.19 22.20

14 20.07 10.86 20.24

18 17.93 6.58 17.16

22 22.37 7.00 20.33

Table 4.3: Spatial RMS of errors for one pair of satellites at 421 km altitude using different degrees
of two-day estimates of the gravity field. Results are truncated at degree 60 and represent 20 days
of data. Units are in cm of EWH.

Table 4.3 shows a sizeable reduction in the RMS of the errors when estimating two-day

gravity fields to low degree and order, particularly for ice mass variations. Estimating two-day

18x18 gravity fields is shown to provide the most benefit in reducing the errors, providing a 32%

reduction in the level of error in determining hydrology, a 79% reduction in ice mass variation

errors, and a 41% reduction in OBP errors. The reason that ice mass variation errors are reduced

more than errors in hydrology and OBP is twofold: first, this is the region where the groundtracks

are the most dense, and second, it is also the region where AOD temporal aliasing errors dominate

spatially. Thus, estimating high frequency gravity fields is expected to benefit the polar regions

the most. It should be noted, however, that while the percentage of reduction in the level of errors

is substantial, the magnitude of the errors is still much larger than the power in the signal.

Recall that the results presented in Table 4.3 were for one pair of satellites at 421 km, which

have near-homogeneous groundtrack spacing over two day periods. Section 4.5.1.2 showed that this

scenario provided more accurate estimates of the two-day gravity fields to low degree and order
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than in the case of one pair of satellites at 315 km altitude which had inhomogeneous groundtrack

spacing over two-day periods. We now would like to see if two-day estimates of the gravity field

provide any benefit for the case of one pair of satellites at 315 km altitude. Table 4.4 shows these

results.

Degree of Hydrology Ice OBP
Two-Day Estimates RMS = 4.75 RMS = 2.08 RMS = 2.67

none 14.89 18.23 15.69

6 7.84 5.09 6.47

10 7.80 4.53 6.16

14 7.78 4.94 6.31

18 8.60 4.96 7.54

22 11.21 5.80 9.78

Table 4.4: Spatial RMS of errors for one pair of satellites at 315 km altitude using different degrees
of two-day estimates of the gravity field. Results are truncated at degree 60 and represent 20 days
of data. Units are in cm of EWH.

Table 4.4 shows a substantial reduction in the RMS of the errors when estimating two-day

gravity fields to low degree and order, despite the fact that the groundtracks are inhomogeneous

over two day periods. The best results are given when two-day gravity field estimates are made to

degree and order 10, providing a 48% reduction in the level of error in determining hydrology, a

75% reduction in ice mass variation errors, and a 61% reduction in OBP errors. The fact that 10x10

two-day estimates are optimal for this scenario versus 18x18 two-day estimates being optimal for

the 421 km case with near-homogeneous groundtrack coverage over two days attests to the benefit

that proper groundtrack spacing provides, as discussed in Section 4.4.

It is interesting to note that both the absolute level of errors is lower, and the percentage

reduction in the level of errors is greater for this case than for the case at 421 km altitude with

near-homogeneous groundtrack coverage. Both of these results are a direct consequence of flying

at a lower altitude. Thus, this result indicates that estimating low degree and order gravity fields

has a greater impact for satellite missions flying at a lower altitude than those flying at a higher

altitude. This result was confirmed via separate simulation studies that are not shown here.
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It should furthermore be noted that the level of errors in Table 4.4, while much lower than

those in Table 4.3, is still much higher than the power in the signal. While this process shows a

reduction in the amount of error in the solution, what significance does this have if the error is

still larger than the signal? To answer this question, it can be instructive to look at the errors

in the spectral domain, as a function of degree. Figure 4.6 shows the power in the hydrology and

ice signals, along with the error in recovering those signals for the case of one pair of satellites at

315 km altitude. This plot compares the error when a standard solution strategy is employed (no

two-day gravity field estimates), and when two-day 10x10 gravity fields are estimated. The plot on

the left is when no post-processing on the gravity solutions is performed, and the plot on the right

is after the solutions have been destriped via Swenson and Wahr [2006], and smoothed with a 300

km Gaussian smoothing radius.
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Figure 4.6: Error as a function of degree for one pair of satellites at 315 km altitude showing the
effect of estimating a 10x10 gravity field every 2 days with no post-processing (left), and destriped
and smoothed with a 300 km Gaussian smoothing radius (right)

The left plot in Figure 4.6 shows that the error curve for the case of not estimating any

two-day gravity fields more or less exceeds the power in the signal at degree 14 (1500 km half-

wavelength). When 10x10 gravity fields are estimated every two days, the error curve more or less

exceeds the power in the signal at degree 22 (900 km half-wavelength). Thus, the spatial resolution

of the gravity fields on a global scale has been improved from approximately 1500 km to 900 km.

When the solutions are destriped and smoothed, the right plot of Figure 4.6 shows that much of
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the error in the solution at higher degrees is diminished. This is due to the downweighting of

higher degree coefficients and is a direct consequence of smoothing the solutions. It is seen that the

error curve does not intersect with the power in the signal until approximately degree 40 (500 km

half-wavelength), thus improving the spatial resolution in the gravity fields over what is provided

by estimating two-day 10x10 fields. This indicates that it would simply be a waste of resources

to estimate two-day gravity fields given a single pair of polar satellites, since one can ultimately

obtain solutions with better spatial resolution simply by destriping and smoothing them.

4.5.2.2 Two Pairs of Polar Orbiting Satellites

It was shown in Section 4.5.1.1 that two pairs of satellites both in polar orbits are capable of

providing daily estimates of the gravity field to low degree and order. Table 4.5 shows the spatial

RMS of the errors in determining hydrology, ice mass variations, and OBP signals for different

degrees of daily estimates for a 19-day gravity field solution. All numbers are expressed in cm of

EWH.

Degree of Hydrology Ice OBP
Daily Estimate RMS = 4.73 RMS = 2.08 RMS = 2.65

none 8.73 8.91 9.84

6 4.58 3.31 4.89

10 4.61 3.23 4.66

14 5.12 3.13 5.27

18 4.83 2.97 4.70

22 5.43 2.95 5.38

Table 4.5: Spatial RMS of errors for two pairs of polar orbiting satellites at 315 km altitude using
different degrees of daily estimates of the gravity field. Results are truncated at degree 60 and
represent 19 days of data. Units are in cm of EWH.

Table 4.5 shows that estimating a 10x10 gravity field each day provides a 47% reduction in

the level of errors in determining hydrology, a 64% reduction in ice mass variation errors, and a

53% reduction in OBP errors. It should be noted that the level of error in determining hydrology

is approximately equal to the amount of power in the signal, but the error in determining ice mass
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variations and OBP is still higher than the power in the signal.

Figure 4.7 examines the error in the spectral domain as a function of degree. The plot on

the left is for no post-processing of the data and the plot on the right is when the solutions have

been destriped and smoothed with a 300 km Gaussian averaging radius. The case of not making

any daily estimate of the gravity field is compared with the case of estimating daily 10x10 gravity

fields.
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Figure 4.7: Error as a function of degree for two polar pairs of satellites showing the effect of
estimating 10x10 gravity fields every day with no post-processing (left), and destriped and smoothed
with a 300 km Gaussian smoothing radius (right)

The left plot in Figure 4.7 shows that when no daily estimates are made, the error exceeds the

power in the signal at approximately degree 22 (900 km half-wavelength). When daily 10x10 gravity

fields are estimated, the error exceeds the power in the signal at more or less degree 28 (700 km

half-wavelength). This indicates the improvement in spatial resolution that estimating daily 10x10

gravity fields provides. However, the plot on the right shows that when the solutions are destriped

and smoothed, any benefit that estimating the daily 10x10 gravity fields provided is eliminated,

with both solutions performing equally. Additionally, destriping and smoothing the solutions has

improved the spatial resolution globally over what estimating daily gravity fields provides, showing

that the signal and error curves intersect at approximately degree 40 (500 km half-wavelength).

Again, this indicates for the case of two polar pairs, this technique has no practical applications.

While it has been shown that destriping and smoothing the solutions reduces the benefit
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that estimating daily gravity fields provides, one might ask if this is a necessary step. Figure 4.8

shows the spatial representation of the hydrology and ice signals we are trying to recover along

with the recovered signals, truncated at degree and order 60, for the case of two polar orbiting

pairs of satellites. Shown are the 19-day average of the truth hydrology and ice signals (top-left),

the recovered signals after being destriped and smoothed (top-right), the recovered signal with no

post-processing and without estimating daily gravity fields (bottom-left), and the recovered signal

when daily 10x10 gravity fields are estimated (bottom-right). Figure 4.9 shows the same spatial

representation for recovering OBP signals.

Figure 4.8: 19-day average of the truth hydrology and ice signals (top-left), recovered signals
after destriping and smoothing (top-right)), making no daily estimates (bottom-left), and while
estimating daily 10x10 gravity fields each day (bottom-right). Units are in cm of EWH, and results
are truncated at degree 60.

While estimating daily 10x10 gravity fields greatly reduces the level of error in recovering

hydrology, ice, and OBP signals, it is seen that there are a substantial amount of stripes left in the
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Figure 4.9: 19-day average of the truth OBP signals (top-left), recovered signals after destriping
and smoothing (top-right)), making no daily estimates (bottom-left), and while estimating daily
10x10 gravity fields each day (bottom-right). Units are in cm of EWH, and results are truncated
at degree 60.

solutions. The destriped and smoothed solutions have substantially less error in them and are a

more accurate representation of the truth signal, agreeing with the results presented in Figure 4.7.

Thus, estimating daily gravity fields does not improve the spatial resolution over what is offered

by simply destriping and smoothing for the case of two polar pairs of satellites. While Figure 4.8

shows the signals out to degree 60, one could truncate at a lower degree, say degree 30, which is

approximately where the signal and error curves intersect in the left plot of Figure 4.7 for the case

of estimating daily 10x10 gravity fields. If this were done, it is found that the solutions do not

need to be destriped and smoothed when daily gravity solutions are estimated; however, the extra

spatial resolution that destriping and smoothing provides is sacrificed.

Similar spatial plots could be shown for the case of one pair of satellites, as discussed in

Section 4.5.2.1, but results are similar to those shown in Figure 4.8, only with larger errors.
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4.5.2.3 Two Satellite Pairs: One Polar + One Lower Inclined

Section 4.5.1.1 showed that a polar pair of satellites coupled with a lower inclined pair of

satellites was able to estimate low degree and order gravity fields on a daily time scale. Furthermore,

this was the most capable type of architecture, able to estimate daily gravity fields to the highest

degree with lower errors than the other cases considered.

Table 4.6 shows the spatial RMS of the errors in recovering hydrology, ice mass variations,

and OBP signals. Like previous results, units are in cm of EWH and all results are truncated at

degree and order 60.

Degree of Hydrology Ice OBP
Daily Estimate RMS = 4.73 RMS = 2.08 RMS = 2.65

none 2.93 6.47 3.33

6 3.11 5.40 3.35

10 2.97 5.35 3.18

14 2.81 4.28 2.90

18 1.97 4.00 2.28

22 2.28 3.15 2.38

Table 4.6: Spatial RMS of errors for two pairs of satellites (one polar + one lower inclined) using
different degrees of daily estimates of the gravity field. Results are truncated at degree 60 and
represent 19 days of data. Units are in cm of EWH.

The results in Table 4.6 are different than those for one pair of satellites and two pairs of

polar orbiting satellites in that the level of error when not estimating any daily gravity fields is

quite low. In fact, the level of error in hydrology is lower than the power in the signal. This attests

to the benefit of having East-West information in the gravity field solution. When 18x18 gravity

fields are estimated each day, the errors in recovering hydrology are reduced by 33%, the errors in

recovering ice mass variations are reduced by 38%, and the errors in recovering OBP signals are

reduced by 32%. While this is a more modest reduction in the percentage of the errors over the

other cases considered, the absolute level of error is substantially lower.

Figure 4.7 examines the error in the spectral domain as a function of degree. The plot on

the left is for no post-processing of the data and the plot on the right is when the solutions have
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been destriped and smoothed with a 300 km Gaussian averaging radius. The case of not making

any daily estimate of the gravity field is compared with the case of estimating daily 18x18 gravity

fields.
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Figure 4.10: Error as a function of degree for a polar pair of satellites coupled with a lower inclined
pair of satellites showing the effect of estimating a 18x18 gravity field every day with no post-
processing (left), and destriped and smoothed with a 300 km Gaussian smoothing radius (right)

Figure 4.10 shows the spatial resolution in the estimated gravity fields is approximately

570 km, and improves to 440 km when daily 18x18 gravity fields are estimated. Destriping and

smoothing affects each solution similarly as it did the previous two cases: the spatial resolution

of the destriped and smoothed solution is shown to be roughly 500 km (corresponding to degree

40). This indicates that estimating daily 18x18 gravity fields offers a slight improvement in spatial

resolution over what is offered by simply destriping and smoothing for the case of a polar pair of

satellites coupled with a lower inclined pair of satellites.

To gain a better insight into this, Figure 4.11 shows the spatial representation of the 19-

day average of the truth hydrology and ice signals (top-left), along with the recovered signals

for destriped and smoothed solutions (top-right), no post-processing and without making daily

estimates of the gravity field (bottom-left), and after estimating daily 18x18 gravity fields (bottom-

right). Figure 4.12 shows the same series of plots only for recovering OBP signals. The plots are

represented to degree and order 60 and are displayed in cm of EWH.

Figures 4.11 and 4.12 show improvements in determining hydrology, ice mass variations,
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Figure 4.11: 19-day average of the truth hydrology and ice signals (top-left), recovered signals
after destriping and smoothing (top-right)), making no daily estimates (bottom-left), and while
estimating daily 18x18 gravity fields each day (bottom-right). Units are in cm of EWH, and results
are truncated at degree 60.

and OBP signals when daily 18x18 gravity fields are estimated. Both longitudinal stripes and

spurious errors (particularly at high latitude regions) are reduced by making the daily estimates.

The solutions obtained when estimating daily 18x18 gravity fields are superior to those obtained

after destriping and smoothing, as much more spatial information is retained (for instance, see

North America and Greenland in Figure 4.11). This illustrates the very important fact that given

a mission architecture consisting of a polar pair coupled with a lower inclined pair, one gains two

substantial advantages : (1) the quality of the solution is intrinsically better due the addition of

the East-West information (seen by comparing Figures 4.11 and 4.8), and (2) by estimating daily

18x18 gravity fields, the quality of the solution can be improved to such a level that destriping

and smoothing the solutions is no longer necessary when examining hydrology and ice signals to
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Figure 4.12: 19-day average of the truth OBP signals (top-left), recovered signals after destriping
and smoothing (top-right)), making no daily estimates (bottom-left), and while estimating daily
18x18 gravity fields each day (bottom-right). Units are in cm of EWH, and results are truncated
at degree 60.

degree and order 60 (∼ 330 km). For OBP signals shown in Figure 4.12, one could argue that the

destriped and smoothed solutions are superior to those provided by estimating daily 18x18 gravity

fields. The reason that the stripes are more dominant in this case than the case of hydrology and

ice signals, is that the magnitude of OBP signals is smaller, hence, we have smaller signal to noise

ratios. It is found that applying a simple 200 km Gaussian averaging radius to the solution obtained

after estimating daily 18x18 gravity fields provides much better results.

There is one more point which should be illustrated concerning these solutions. Figure 4.10

illustrates that when daily 18x18 gravity fields are estimated, degrees 16-18 actually have more error

than if no daily estimates were made. To investigate this more thoroughly, the errors (difference

between the truth and recovered) in each coefficient can be examined. Figure 4.13 shows the

logarithm of the error in each coefficient for the three cases of not having any daily estimate,
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estimating daily 14x14 fields, and estimating daily 18x18 fields. What is most striking in these

plots is that once daily 18x18 gravity fields are estimated, the bands of error that are at multiples

of the resonant order (16) diminish substantially. While this error is reduced considerably, the

error in the coefficients near the resonant order in the daily estimates become extremely high, as

is indicated in Figure 4.13. Thus, one gets substantial improvement at the higher degrees with a

slight degradation in the coefficients near the resonant order.

Figure 4.13: Logarithm of the actual error in each coefficient for no daily estimate (left), estimating
a daily 14x14 (middle), and estimating a daily 18x18 (right)

This phenomena is also seen when showing the errors as a function of order of the gravity

field, displayed in Figure 4.14. The first thing one notices are the large errors at multiples of the

resonant order. Estimating daily 18x18 gravity fields reduces the error at the multiples of the

resonant orders substantially.
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Figure 4.14: Error as a function of order when comparing different degrees of daily estimates using
two pairs of satellites (one polar + one lower inclined)
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In essence, when one extends the daily estimate to include the resonant order, the daily

estimate of the near-resonant order coefficients becomes somewhat of a junk parameter. This is

akin to the process of estimating once per revolution and twice per revolution terms in the gravity

signal that most centers that process GRACE data employ. Since so much error manifests itself

at these frequencies, these parameters are estimated and then thrown away. Thus, when the daily

estimate includes the near-resonant order terms, a small number of spherical harmonic coefficients

absorb much of the error that would otherwise go to the multiples of the resonant order terms at

much higher degree. This could be partially attributed to the fact that on a daily time scale, the

satellites are essentially in a 16/1 repeat mode with a resonance frequency at degree 16, hence,

leading to the accumulation of error at this degree. Simply put, one gains an improvement at short

wavelengths for a slight degradation at longer wavelengths.

It should be mentioned that one could also think of gaining additional benefits by varying con-

straints on the spherical harmonic coefficients. As was mentioned in Section 3.4, certain spacecraft

state parameters are constrained during the estimation process via Rowlands et al. [2002], however

no constraints are placed on the spherical harmonic coefficients. An optimal set of constraints could

be developed for this procedure to enhance the solutions; however, this was not explored in the

dissertation.

4.6 Conclusions

In this chapter, we investigated the effect that making high frequency/low resolution estimates

of the gravity field has on mitigating temporal aliasing errors and improving the spatial resolution

of the derived gravity field models. Three possible mission architectures were examined: one pair

of polar orbiting satellites, two pairs of polar orbiting satellites, and one pair of polar orbiting

satellites coupled with a lower inclined pair of satellites. Results showed that one pair of satellites

does not have the ability to accurately estimate a low degree and order gravity field each day,

but can estimate a low degree and order gravity field using two days of data. The quality of the

two-day estimates is largely dependent on the homogeneity of the groundtrack coverage over two
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days. Conversely, two pairs of satellites were shown to be able to estimate low degree and order

gravity fields each day with adequate accuracy. The polar pair coupled with the lower inclined pair

provides the most accurate estimates.

All cases considered showed substantial improvements in their ability to estimate hydrology,

ice mass variations, and ocean bottom pressure signals when low resolution/high frequency gravity

field estimates were made. It was shown that the process of estimating high frequency gravity

fields is more effective when the satellites are at a lower altitude due to the increased sensitivity

to the gravity field that flying at a lower altitude provides. The cases of one pair of satellites and

two pairs of polar orbiting satellites provide anywhere between a 50% and 75% reduction in the

level of errors in determining hydrology, ice mass variations, and ocean bottom pressure signals, by

making two-day and daily estimates of the gravity field, respectively. The largest benefit was seen

in estimating ice mass variations, as these regions have the most dense groundtrack coverage and

temporal aliasing errors tend to be larger in the polar regions. While the percentage reduction in

the level of errors for these cases is impressive, the overall level of errors is still larger than that

of the signal, and many of the errors manifest themselves as longitudinal stripes in the solution.

Thus, for use in the scientific communities, the solutions would most likely need to be destriped

and smoothed via standard GRACE post-processing techniques, limiting much of the additional

spatial information that making the low degree estimates of the gravity field at high frequencies

provides.

The case of a pair of polar orbiting satellites coupled with a lower inclined pair of satellites

making daily estimates provides a more modest reduction in the level of errors, with errors being

reduced anywhere between 30% and 40% in recovering the signals of interest. The level of error

is substantially lower than that of the other cases, however, showing the benefit that having East-

West information provides to the solution. While this type of architecture by itself increases the

accuracy of the gravity solutions over the other cases considered, we show that there is an additional

advantage to having a polar pair and a lower inclined pair of satellites: the ability to further mitigate

the effect of temporal aliasing errors by making daily low degree and order estimates of the gravity
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field. Furthermore, when studying hydrology and ice mass variations, the gravity solutions would

not need to be destriped or smoothed, greatly enhancing the spatial resolution of the solutions.
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Chapter 5

Design Considerations for Two Satellite Pairs

5.1 Introduction

This chapter focuses on reducing temporal aliasing errors by increasing the sampling fre-

quency of the mission through the addition of a second pair of satellites. In theory, if enough pairs

of satellites were placed in proper orbits, one could sample the gravity field at a high enough fre-

quency such that temporal aliasing errors would be largely eliminated. Having a dozen, if not more,

satellite pairs to accomplish such a feat is cost-prohibitive at this point. As such, this work focuses

on the more interesting question of optimizing the orbits of two pairs of satellites for recovering

temporal gravity variations.

5.2 Orbit Design Considerations

The search space for this problem is extremely large, and is further complicated when con-

sidering that the selected orbits will be a strong function of the science goals of the mission. For

instance, if the primary goal of the mission is to determine continental hydrology (excluding ice)

at small spatial scales, then one might place the satellites in orbits with dense coverage over these

regions, but less coverage over the polar regions. This would most likely result in decreased sen-

sitivity to determining ice mass variations in Greenland and Antarctica. However, if the primary

science objective is to determine ice mass variations in Greenland, then a different mission architec-

ture would be selected. This study assumes that the science goals of the mission are to determine

continental hydrology, ice mass variations, and ocean bottom pressure signals over the entire globe
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with as high spatial resolution as possible, with each area of science being weighted equally.

Considering strictly the satellite orbits, one can characterize the mission performance, P,

given two pairs of collinear satellites, via the following:

P = f(X1,X2,∆ν1,∆ν2, L). (5.1)

In Equation 5.1, X1 and X2 are the state (position and velocity) of the lead spacecraft of the first

and second pair of satellites, respectively, ∆ν1 and ∆ν2 are the separation distances between the

first and second pairs of satellites, respectively, and L is the amount of time that data are collected.

It is most convenient to represent the state of the spacecraft in terms of mean Keplerian orbital

elements, given in Equation 5.2.

X1 = f (a1, e1, i1,Ω1, ω1, ν1)

X2 = f (a2, e2, i2,Ω2, ω2, ν2)

(5.2)

Here, a is the semimajor axis, e is the eccentricity, i is the inclination, Ω is the longitude of

ascending node, ω is the argument of perigee, and ν is the true anomaly. Coupling Equations 5.1

and 5.2, one can see that the mission performance of this type of architecture will be directly related

to 15 parameters. Adding additional satellites pairs will increase the number of variables by seven

for each pair of satellites added. It is desirable to reduce the number of independent variables and

narrow down the search space by making appropriate assumptions.

First, the inter-satellite separation distances, defined as ∆ν1 and ∆ν2, will likely be chosen

based on the satellite-to-satellite ranging instrument requirements. Future missions are likely to

use a laser interferometer, for which a 100 km separation distance is chosen as a trade-off between

instrument performance as well as relative accuracy in determining short wavelength and long

wavelength features in the gravity field [Wiese et al., 2009]. Fixing this distance allows us to

eliminate two of the variables, ∆ν1 and ∆ν2, from the search space.

Next, it can be assumed that the spacecraft should fly in circular orbits to minimize any

relative changes in distance due to having eccentric orbits, as GRACE does. Fixing the eccentricity

to zero eliminates two additional parameters.
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Given circular orbits, the argument of perigee, ω, becomes ill-defined. Hence, we can now

define the argument of latitude, u, which is equal to the sum of the true anomaly and the argument

of perigee (u = ω + ν). The argument of latitude defines the position of the satellite in its orbit

about the Earth with respect to Ω. While this is a parameter that could have an effect on the

gravity solution, it is impossible to determine what the optimal satellite position should be due

to the extremely complex nature of the problem. For example, it would be optimal if, during a

flooding event, the satellite flew over the region of interest. However, it is impossible to know when

this event might occur in the future, making it very difficult to optimize.

While optimizing u1 and u2 independently is not feasible, one could think of optimizing the

relative difference in the argument of latitude between the two pairs of satellites in an effort to

meet certain temporal groundtrack crossing constraints (i.e., the second satellite pair will fly over

a location on the Earth a specified amount of time after the first satellite pair flew over the same

location). The same argument holds for the longitude of ascending node, Ω, in a spatial sense. That

is, in an absolute sense it is impossible to determine what the optimal values for Ω1 and Ω2 should

be, since we cannot predict the time and location of mass variations on the Earth years in advance.

However, the relative difference between the ascending nodes of the two pairs of spacecraft could

be optimized to provide a required spatial constraint on the combined groundtrack pattern of the

two satellite pairs. Thus, Ω1 and Ω2, along with u1 and u2 can be reduced to two new parameters:

∆Ω12, and ∆u12. The first, ∆Ω12, provides a spatial constraint on the groundtrack pattern of

the two satellite pairs while the second, ∆u12 provides a temporal constraint on the groundtrack

pattern. It is expected that ∆u12 can only be optimized if the periods of both satellites pairs are

equal to each other, which would require that a1 = a2. Otherwise, there will be a secular drift rate

in the time that the two pairs of satellites cross the same location on the Earth which cannot be

controlled.

Next, we can consider the inclination of the satellites. In order to provide global coverage

of the Earth, at least one of the pairs of satellites must be in a near-polar orbit. Thus, this can

be set as a constraint. The inclination of the second pair of satellites, however, is free to vary.
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The problem has now been reduced from one with 15 parameters to one with only six, and can be

represented via the following:

P = f(a1, a2, i2,∆u12,∆Ω12, L). (5.3)

Let us now discuss the semimajor axis of the two pairs of satellites. As shown in Equation 2.10,

the gravitational potential is proportional to r−n; hence, one is more sensitive to the potential at

lower altitudes. As discussed in Section 1.4, it is envisioned that future GRACE-type missions will

also employ drag-free technology, allowing one to fly at a lower altitude with increased sensitivity

to short wavelength features in the gravity field. With this in mind, one can set a minimum bound

on the altitude of the spacecraft which depends on many factors, including, but not limited to: the

design lifetime of the satellites, the amount of propellant available, the type of thrusters used, the

cross-sectional area of the spacecraft, and the magnitude of the atmospheric density. Some work

has been done to this end, by Marchetti et al. [2008] and St. Rock et al. [2006], examining the

performance of drag-free control systems in low-Earth orbit, and the mission lifetimes associated

with various thrusters. Figure 5.1 depicts the results from each respective paper, along with the

initial estimate for the GOCE mission, assuming the same initial mass propellant fraction as the

GRACE mission (0.18). Note that the results from St. Rock et al. [2006] have been scaled down

by a factor of two to account for variable specific impulse and control system use that was not

considered in the analysis.

Figure 5.1 illustrates that a 290 km altitude allows the satellites to remain in orbit for 10

years; thus, this was selected as the minimum altitude for this study. Note that this calculation is

very approximate, and a rigorous analysis of a control system in the appropriate environment would

need to be made to refine the targeted altitude; however, it is valid as a first-order approximation

and sufficient for the purposes of this study.

The last parameter which needs to be discussed from Equation 5.3 is L, the length of time that

data are collected. The parameter L will depend primarily on the targeted spatial and temporal
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Figure 5.1: Mission lifetime as a function of altitude assuming an initial mass propellant fraction
of 0.18

resolution of the mission. In principle, the product of the spatial resolution and temporal resolution

of a mission is constant; that is, given a fixed number of satellite pairs, one cannot improve the

spatial resolution without sacrificing temporal resolution and vice-versa [Dirac, 1958; Visser et al.,

2010]. As discussed in Section 4.4, given homogeneous groundtrack spacing, the spatial resolution of

a mission can be approximated by the Colombo-Nyquist rule, which states the maximum resolvable

degree of the gravity field is equal to half of the number of orbital revolutions of the satellites

[Colombo, 1984], guaranteeing gravity solutions that are homogeneous in longitude [Visser et al.,

2011]. While larger values of L theoretically lead to better spatial resolution, they also allow

for greater accumulation of temporal aliasing errors. While some steps can be taken to mitigate

the effect of temporal aliasing errors, such as co-estimating high frequency/low resolution gravity

fields as discussed in Chapter 4, varying the L parameter should lend insight into proper trade-offs

between increasing the spatial resolution of the solutions and mitigating the effect of temporal

aliasing errors.

There is one more point to be mentioned concerning L. One drawback of GRACE is the lack

of an altitude control system. This leads to variability in the groundtrack pattern of GRACE, and

subsequent variability in the quality of the monthly solutions. This was discussed in Klokocnik

et al. [2008] and Wagner et al. [2006], showing the degradation in gravity solutions from GRACE
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in the fall of 2004 when the satellites passed through a 61/4 resonance orbit. Due to the success of

the GOCE mission implementing a drag-free system and maintaining a constant orbital altitude,

it seems advantageous to consider only repeat groundtracks for future missions. Imposing this

constraint assures consistent quality in the time-variable gravity solutions.

From Kaula [1966], even zonal coefficients in addition to a nonlinear (J2)
2 contribute to the

secular rate of the node, Ω̇. However, all terms are second order when compared to the contribution

of J2, thus, we design the repeat groundtracks by considering only this term. Given a desired

eccentricity and inclination, there are only certain values for the semimajor axis which will satisfy

the conditions for a repeating groundtrack. One can obtain the appropriate values for semimajor

axis, a, by solving the following equation [Vallado, 2001]:

C2a
7/2 + C1a

2 + C0 = 0, (5.4)

where

C2 =
l

k
ωe

C1 = −√
µ (5.5)

C0 =
α

4ǫ4

[

l

k
2 cos i+ 1− 5 cos2 i−

(

3 cos2 i− 1
)

ǫ

]

,

in which

α = 3
√
µJ2r

2
e

ǫ =
(

1− e2
)

1

2 . (5.6)

In these sets of equations, µ is the gravitational constant of the Earth, J2 is the negative of the

unnormalized C20 coefficient describing the oblateness of the Earth, ωe is the rotation rate of the

Earth, k is the desired number of nodal days it takes for the satellites to repeat, and l is the number

of orbital revolutions the satellites perform in k nodal days. It should be noted that k/l must be

irreducible, and l is given by
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l =
k
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ω̇ + Ṁ
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) , (5.7)

with

Ω̇ =
−3

2

√
µJ2r

2
e cos i

(1− e2)2 a
7

2

, (5.8)

ω̇ =
3

4

√
µJ2r

2
e

(

5 cos2 i− 1
)

(1− e2)2 a
7

2

, (5.9)
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√
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Here, Ω̇, ω̇ and Ṁ are the secular drift rates of the longitude of ascending node, argument of

perigee, and mean anomaly, respectively, due to the oblateness of the Earth considering only the

effect of J2. Note that all Keplerian orbital elements used thus far, including the new semimajor

axis, are in mean element space; that is, they are mean orbital elements. All Keplerian orbital

elements then need to be converted to osculating elements prior to propagation via Brouwer [1959].

This accounts for short term periodic variations in the orbit due to J2, and allows for the groundtrack

to keep its repeat pattern.

Thus, selecting a particular value for L inadvertently imposes an additional constraint on

either a1 or a2: that the value for a must put the satellite in a repeat orbit. It is not imperative

that both satellite pairs have a value of k equal to that of L, but one pair must. It has been pointed

out by Bender et al. [2008] that perhaps the most effective way to design the architecture would be

to have a lower inclined pair in a longer repeat period (RP) coupled with a polar pair of satellites in

a shorter RP. This would lead to more homogeneous spacing in the combined groundtrack pattern

of the two pairs of satellites, since, by nature, groundtracks are more dense over the poles than the

equator. In this scenario, the lower inclined pair would be selected to have a value of k equal to L,

while the RP of the polar pair of satellites would be allowed to vary, but would be constrained to

be less than that of the lower inclined pair. Thus, all such combinations should be explored.

Finally, taking into consideration the above discussion, Equation 5.3 can be rewritten as

P = f(k1, k2, i2,∆u12,∆Ω12). (5.11)
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In Equation 5.11, k1 is the RP of the polar pair of satellites and k2 is the RP of the other pair of

satellites for which the inclination can vary. Note that the additional constraints which are imposed

are that k2 = L and that k1 ≤ k2. One additional caveat that should be mentioned is that k is

expressed in units of nodal days, while L is typically expressed in units of solar days, since the data

processing is usually set up to handle daily batches of data. This means that typically a solution

will have slightly more data (a few hours) than what is taken during the full repeat period of the

satellites. Table 5.1 is a list of all constraints that were imposed to arrive at Equation 5.11.

Parameter Constraint

a1,a2 290 km minimum; Repeat Groundtrack

e1,e2 0 (Circular Orbits)

i1 90o

∆ν1, ∆ν2 100 km

L L = k2; k1 ≤ k2

Table 5.1: Constraints imposed on design criteria to reduce the search space for an optimal archi-
tecture

Using the constraints listed in Table 5.1, Equation 5.11 has been reduced from one that ini-

tially was a function of 15 variables to one that is now a function of only five variables. Furthermore,

it is expected that the values selected for k1, k2, and i2 will have the most influence on how well

the mission performs. ∆u12 and ∆Ω12 are expected to have much smaller impacts.

It should further be stressed that this type of analysis is considerably biased towards the

minimum altitude chosen, in this case, 290 km. To illustrate this, Figure 5.2 shows the closest

altitude to 290 km (without going below it) for different values of k1.

Figure 5.2 illustrates how results could be biased towards the minimum allowable altitude.

For example, the closest 8-day RP groundtrack to 290 km exists at an altitude of 291 km, versus

374 km for a 12-day RP. The lower altitude given by the 8-day RP orbit could trump any benefit

that collecting data for 12 days versus 8 days might add.

The same analysis can be done if one fixes a value for k2, but lets i2 vary. Figure 5.3 shows

how the altitude necessary to maintain a 17-day RP orbit changes as a function of inclination.



www.manaraa.com

80

0 5 10 15 20 25
280

300

320

340

360

380

Repeat Period (nodal days)

A
lti

tu
de

 o
f s

at
el

lit
e 

(k
m

)

Figure 5.2: Necessary altitude to maintain specific repeat periods for a polar pair of satellites
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Figure 5.3: Necessary altitude to maintain a 17-day repeat period at different inclinations

Hypothetically speaking, if a 70o inclination were an optimal value for i2 speaking strictly

in terms of inclination, Figure 5.3 suggests that this study might find that a 71o inclination is the

optimal value for i2 since this orbit is 16 km lower in altitude than the orbit with a 70o inclination.

This analysis shows how the altitude, repeat period, and inclination are inherently coupled together,

and an optimal set of orbital parameters will be a strong function of the mission constraints.
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5.3 Methodology

Due to the unpredictable nature of various force models (hydrology, atmosphere, ocean,

tides, ice), and the temporal aliasing errors that are associated with them, it was determined

that performing a Monte-Carlo analysis using numerical simulations was the most effective way to

approach this problem. The primary parameters of interest in Equation 5.11 are k1, k2, and i2.

The following are the ranges of values explored for these parameters:

k1, k2 = [4, 23] days; k1 ≤ k2 (5.12)

i2 = [25o, 90o] (5.13)

A step size of 5o was used in exploring the range of values for i2. After the initial results narrowed

down a more appropriate range of values for i2, then a 1o step size was used. Examining the ranges

given in Equations 5.12 and 5.13, one can calculate that 2,940 simulations are necessary to cover

the entire search space of the k1, k2, and i2 variables.

Numerical simulations were run via the process described in Section 3.4 using the simulation

detailed in Table 3.1. The computation time associated with such a large matrix of simulations

is expensive, and increasing the degree of estimation exponentially increases the processing time.

As such, a subset of simulations was carried out to both degree 60 and degree 100 to ensure

consistency between the two, in hopes of being able to run the matrix of simulations to degree 60.

It was expected that the two would correlate; however, the results were surprising, showing smaller

correlations than expected. This is discussed in detail in Section 5.4.1. As a result, all simulations

were run to degree and order 100.

As discussed in Section 2.3, there are a host of techniques which can be used to quantify

the performance P of a gravity recovery satellite mission. P depends substantially on what the

scientific goals of the mission are. For this study, we took the liberty of defining the scientific goals

of the mission to be increasing the spatial resolution of the recovered hydrology, ice, and ocean

bottom pressure signals as much as possible. Each area of science is weighted equally; hence, one
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hopes to minimize the error, E, given by

E =
E(H) + E(I) + E(O)

3
(5.14)

In Equation 5.14, E(H) represents the error in determining hydrology, E(I) is the error in deter-

mining ice mass variations, and E(O) is the error in determining ocean bottom pressure signals.

There are many methods and tools which one can use to analyze error and quantify E(H), E(I),

and E(O) on both global and regional scales. While regional metrics are preferred, this study is

already computationally expensive. It is therefore desirable to use a global metric to quantify E to

narrow down the search space and identify a select few mission architectures for further analysis on

a regional scale. Since the end user is primarily interested in performance in the spatial domain,

it was decided that a spatial RMS (discussed in Section 2.3.1.2 would be used to calculate E(H),

E(I), and E(O). While this is not a perfect representation for the performance of a mission by

itself, it does give a very good indication of how changing k1, k2, and i2 affects the ability of the

satellites to recover the geophysical signals that we are interested in.

Figure 5.4 illustrates how E is calculated, showing the truth signals (left), recovered signals

(middle), and error (right), for recovering both hydrology and ice mass variations (top), as well

as ocean bottom pressure signals (bottom). This simulation is for a single pair of polar orbiting

satellites in a 13-day RP at 299 km. The plots have been truncated at degree 60 and are expressed

in cm of equivalent water height (EWH).

When calculating E, one uses the spatial plot of errors, given by the right set of plots in

Figure 5.4. Furthermore, one can calculate the power in the truth signals, S, for hydrology (S(H)),

ice mass variations (S(I)), and ocean bottom pressure (S(O)) in the same manner that the error

is calculated in Equation 5.14. Table 5.2 illustrates the signal and error associated with Figure 5.4

in cm of EWH. In this case, the error exceeds that of the signal since the solutions have not been

destriped and smoothed, as typically is done with data of this type.

Note that throughout this chapter, E is obtained by taking the solutions to degree 100 and

truncating them at degree 60 to make the spatial maps. The reason for doing this is that it was
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Figure 5.4: Truth signals (left), recovered signals (middle), and the error (right) for recovering
hydrology and ice mass variations (top row of plots) and ocean bottom pressure signals (bottom
row of plots) given a polar pair of satellites at 299 km in a 13-day repeating groundtrack. Units
are in cm of equivalent water height.

Signal (cm) Error (cm)

Hydrology S(H) = 4.67 E(H) = 13.97

Ice S(I) = 2.12 E(I) = 7.54

Ocean S(O) = 2.46 E(O) = 11.04

Total S = 3.08 E = 10.85

Table 5.2: Signal and error associated with Figure 5.4. Units are expressed in cm of EWH.

found that if the results are truncated at degree 60, they generally do not need to be destriped or

smoothed for the case of two satellite pairs, resulting in better spatial resolution than if they were.

5.4 Results

This section shows the most important results from the Monte-Carlo analysis in an effort

to optimize k1, k2, and i2. Additionally, Section 5.4.5 discusses groundtrack patterns obtained

by tuning ∆Ω12 and ∆u12. This section begins with a discussion on the impact of performing
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simulations to degree 60 versus degree 100.

5.4.1 Degree of Estimation

It was found that the calculated error, E, varies substantially for certain cases depending

on if the simulations are run to degree and order 60 or 100. To explain this, an example case is

shown. When simulations are carried out to degree and order 60, one of the better performing

mission architectures consists of a polar pair of satellites in an 8-day RP at an altitude of 291 km

coupled with a lower inclined pair (72o) in a 13-day RP at an altitude of 290 km. The error, E, from

Equation 5.14, is calculated to be 4.64 cm EWH for this case. Conversely, when the simulations

are extended to degree and order 100, but truncated at degree 60 for a fair comparison, the error

is calculated to be 10.38 cm EWH. This contradicts the expected results that the error obtained

from these two cases should be more or less commensurate with each other. To explain this result,

Figure 5.5 presents the logarithm of the actual error in the coefficients as a function of degree and

order.

Figure 5.5: Logarithm of the error in the coefficients for a simulation carried out to degree 60 (left)
and a simulation carried out to degree 100 (right)

Figure 5.5 shows that when the solution is extended to degree 100, large bands of error

show up at two and three times the resonant order that do not exist in the degree 60 solutions.

To study why this is the case, the covariance matrix can be analyzed. Figure 5.6 illustrates how
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the C(51,51) coefficient is correlated with other coefficients, and was obtained by examining the

covariance matrix of a gravity solution involving only the 8-day polar RP orbit over the 13 days of

the mission simulation. Note that the correlations with all coefficients are not shown in the plot,

as the correlations outside of the window shown are effectively zero, as expected.
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Figure 5.6: Correlations with the C(51,51) coefficient for an 8-day RP polar orbit

Given a spherical harmonic coefficient of a certain order, coefficients of the same order produce

orbital element perturbations of identical frequency [Kaula, 1966], shown by the correlations at

order 51 in Figure 5.6. In this peculiar case, however, the period of a near resonant perturbation

at order m = 51 is identical to the period of a near-resonant perturbation at m = 76, which also

manifests itself in Figure 5.6 via the correlations at m = 76. Table 5.3 displays the magnitude of

the largest perturbation in semimajor axis and the along-track direction (ω +M) for both m = 51

and m = 76 along with the period of the perturbation, and was calculated via Rosborough and

Tapley [1987].

The p and q variables in Table 5.3 are taken from Kaula’s standard solution for the grav-

itational potential in terms of Keplerian orbital elements [Kaula, 1966]. The similarity of the

perturbation frequencies leads to the filter being unable to separate them, and these bands of coef-

ficients become poorly determined, as is reflected in Figure 5.5. This error then manifests itself in

the spatial plot of the recovered signals, leading to a large value of E. Note that similar unexpected
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Period (hours) ∆a (cm) ∆ω +M (deg)

l=51,53,55,...
m=51 p=24,25,26,... 7.09 3.87 0.86E-5

q=0

l=77,79,81,...
m=76 p=36,37,38,... 7.09 0.78 0.67E-6

q=0

Table 5.3: Dominant perturbations for m=51 and m=76 for a polar pair of satellites in an 8-day
RP at 291 km

correlations exist for orders other than the one shown here for this particular case. The above

results demonstrates the importance of performing simulation studies to high degree and order.

5.4.2 Selecting an Inclination

It is expected that the selected value for i2 will have a large influence on the mission perfor-

mance. Figure 5.7 shows the formal errors for a 17-day RP polar pair of satellites coupled with a

17-day RP pair of satellites at various inclinations. The logarithm of the formal error of each spher-

ical harmonic coefficient is plotted. Note that the difference in altitude between the satellite pairs

at different inclinations will have slight influences on the formal errors. However, if one examines

Figure 5.3 which shows the altitude for the various inclinations of a satellite in a 17-day RP, it is

seen that the difference in altitude between each of these cases is 15 km at a maximum. Thus, this

effect should be minimal on the covariance analysis.

Figure 5.7 shows that for 55o ≤ i2 ≤ 65o, higher degree and order tesseral harmonics are

perhaps the best determined. Sectorial and near-sectorial coefficients tend to have larger errors as i2

increases. Studying the covariance matrices alone might lead one to conclude that an inclination of

approximately 60o is near-optimal in the sense that the overall errors of the coefficients is lowest and

the covariance matrix is fairly isotropic (no order dependence). However, geographically speaking,

if the second pair of satellites flies at an inclination of 60o, it is seen that it provides no coverage

over Greenland, and does not cover a substantial amount of landmass in the northern hemisphere,

including Alaska, northern Canada, northern Russia, and the Scandinavian countries. Should the
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Figure 5.7: Covariance analysis for a 17-day RP polar pair coupled with a 17-day RP pair of
satellites at various inclinations. The logarithm of the standard deviation of the coefficients is
plotted.

second pair of satellites provide coverage over these regions, it could improve the determination of

mass variations in these areas even though this is not reflected in the covariance analysis.

Therefore, it is useful to compare the error metric, E, as discussed in Section 5.3, between

different inclinations. Figure 5.8 shows E for a pair of satellites at different inclinations in a 17-day

RP coupled with a polar pair of satellites in different repeat periods (15, 16, and 17 days).

Figure 5.8 shows that whether the lower inclined pair of satellites is coupled with a 15, 16,

or 17-day RP polar pair of satellites, the general trend in the error as a function of inclination is

the same. Typically, the error reaches a minimum between 70o and 75o. This is not surprising

since a pair of satellites at this inclination gets fairly good coverage over the Earth while still
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Figure 5.8: Error as a function of inclination for a lower inclined pair in a 17-day RP coupled with
a polar pair in 15, 16, and 17-day repeat periods

maintaining a significant East-West component in the observable. The results from two polar pairs

of satellites were not placed on this figure as the errors were so high they would distort the scale.

This attests to the strength of the East-West information in the observable. While Figure 5.8 shows

an extremely small subset of the results that have been analyzed, the general trend of having the

best performance for values of i2 between 70o and 75o was consistent across all cases examined.

5.4.3 Coupling of Repeat Periods

Bender et al. [2008] suggested that having a polar orbiting pair in a shorter RP than a lower

inclined pair would provide more homogeneity in the groundtrack coverage over the Earth, and

thus, result in better solutions. The polar pair of satellites with a shorter RP could reduce the level

of temporal aliasing errors in the polar regions as well.

Figure 5.9 illustrates the error as a function of different repeat periods for the polar pair of

satellites coupled with a lower inclined pair of satellites (70o, 71o, 75o, 80o) in a 17-day RP. Note

that the range of inclinations examined in this plot is consistent with the range of inclinations that

minimized the error as seen in Figure 5.8.

Figure 5.9 shows that generally the error decreases when the lower inclined pair of satellites
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Figure 5.9: Error as a function of the repeat period of a polar pair of satellites being coupled with
lower inclined pair in a 17-day RP

is coupled with a polar pair of satellites in longer repeat periods. Note that this trend exists outside

of the differences in altitude between the polar pairs of satellites. In fact, plotting the error as a

function of altitude of the polar pair rather than the repeat period of the polar pair does not show

significant trends. It can then be assumed that the error is a stronger function of the repeat period

of the polar pair of satellites than the altitude. Thus, one can assume that coupling two satellite

pairs with the same repeat period will provide near-optimal results. One could argue that a global

minimum may not be achieved by setting the repeat periods of the two pairs equal to each other,

based on the fact that in Figure 5.9 it appears that slightly smaller errors exist when the polar pair

is either in a 13-day RP or a 16-day RP versus the 17-day RP that we have recommended. While

this is true, the differences in performance between the cases is extremely small. In an effort to

reduce the search space for this type of mission we feel that invoking a k1 = k2 constraint leads to

near-optimal results while reducing the amount of computation time necessary to study all possible

combinations of k1 and k2. Additional simulation results for repeat periods other than 17 days

validate this statement.
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5.4.4 Selecting a Repeat Period

After selecting a range of near-optimal inclinations for the second pair of satellites as well as

enforcing the constraint that k1 = k2 = L, the search space for an optimal value of L is substantially

reduced. Table 5.4 shows the ten cases for which results will be displayed. Each of these cases has

a lower inclined pair with an inclination around 700 − 75o, selected to provide the closest altitude

to 290 km. Note that the case number corresponds to the RP of the satellite pairs for convenience.

It is evident that there are several repeat periods that are not shown. If a particular repeat period

is not shown, for example, 12 days, this is because the altitude of one of the satellite pairs was too

high for the results to be competitive with those listed. Generally speaking, due to the constraint

that k/l must be irreducible, repeat periods that are prime numbers have a larger range of altitudes

to choose from.

Lower Inclined Pair Polar Pair
Case Rep. Per. Inclination Altitude Rep. Per. Inclination Altitude

(days) (deg) (km) (days) (deg) (km)

9 9 74 291 9 90 318

11 11 70 300 11 90 306

13 13 72 290 13 90 299

14 14 75 290 14 90 316

15 15 70 298 15 90 293

17 17 71 290 17 90 305

19 19 76 291 19 90 300

21 21 71 291 21 90 309

22 22 73 291 22 90 294

23 23 75 291 23 90 292

Table 5.4: Mission architectures examined to optimize the selection of a repeat period

Figure 5.10 shows the error for each of the cases listed in Table 5.4. The blue bars are the

solutions obtained using the processing methodology outlined in Section 3.4. Comparing these

solutions, it is seen that having a repeat period in the range of 11 to 14 days provides the lowest

error, with a global minimum provided by L = 13 days. This range of values for L strikes an

optimal balance between having enough data to form a good solution, but a short enough time
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frame where the accumulation of temporal aliasing errors is mitigated.
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Figure 5.10: Error for the cases listed in Table 5.4 comparing regular processing and estimating
daily 18x18 gravity fields

The red bars in Figure 5.10 are obtained by invoking an alternate processing methodology

where daily 18x18 gravity fields are estimated in an effort to reduce the level of temporal aliasing

errors, described in Chapter 4. It is seen that estimating the daily gravity fields reduces the

error substantially for all cases considered. It is also interesting to note that with this processing

methodology invoked, the longer repeat periods provide the lowest errors. This makes sense, as for

the case with no temporal aliasing errors, the total amount of error should decrease as the square

root of the number of observations. However, the reduction in errors that a 23-day RP provides over

the 13-day RP case is small when one considers that 10 days of temporal resolution are sacrificed.

5.4.5 Groundtrack Patterns

The three primary variables in Equation 5.11 have been optimized. The last two variables,

∆Ω12, and ∆u12 are not expected to have as large of an influence on the solution, as they only

change the space-time sampling characteristics of the orbit. One thing that can be examined,

however, is if certain groundtrack patterns between the two satellite pairs can be developed which

will lower the errors.
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In this work, it was noticed that for the case of having two polar pairs of satellites in the

same RP and at the same altitude, the best solutions are obtained when ∆Ω12 is set such that

∆Ω12 = δ + ǫ, (5.15)

where

δ = π

(

1 + ωe

√

a3

µ

)

, (5.16)

and

ǫ =
2π

l

(

1

2
−
(

lδ

2π
−
⌊

lδ

2π

⌋))

, (5.17)

In Equation 5.15, δ shifts the relative node between the two satellite pairs exactly 180◦ from each

other plus the distance it takes for the Earth to rotate during one-half of a satellite revolution. The

ǫ term is added as a correction factor such that the groundtracks of the second pair of satellites will

fill in the gaps at the equator from the groundtracks of the first pair of satellites, resulting in more

dense coverage. This architecture guarantees that the mutual crossing location of both satellite

pairs will be at a constant low latitude (∼ 7◦), rather than at the equator. This configuration

appears to have substantial benefits in the case of two polar pairs of satellites, reducing the errors

at the resonant orders considerably. The same magnitude of improvement is not provided when

applying it to the case of a polar pair coupled with a lower inclined pair, however. The reason for

this is twofold: (1) the periods of the two satellite pairs are different, and (2) the inclinations of

the two pairs are different, meaning that the drift rate of the node (Ω̇), given in Equation 5.8 is

different between the two cases. These two differences mean that there are no consistent crossings

between the two satellite pairs in either space or time. However, there are still minor improvements

seen when invoking Equation 5.15 to the cases in Table 5.4. Figure 5.11 shows the reduction in

the level of error that this shift provides. Since ∆Ω12 will not be constant for the duration of the

mission due to Ω̇ for the lower inclined pair, the reduction in the level of errors seen in Figure 5.11

represents the natural variability in the quality of the solutions due to the precession of ∆Ω12.

One can now begin to think of developing a spatial groundtrack pattern for the case of having

a polar pair coupled with a lower inclined pair that is consistent, as is the case when there are two
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Figure 5.11: Error for the cases listed in Table 5.4 comparing the effect of shifting the longitude of
ascending node

polar pairs. Note that we are only interested in developing a spatial pattern (∆Ω12), and not

a temporal one (∆u12), since the difference in periods between the two satellites pairs causes a

secular drift rate in this parameter ( ˙∆u12) which cannot be controlled. One can, however, raise the

altitude of the polar pair of satellites such that its period increases enough to compensate for the

nodal drift rate of the lower inclined pair, thus, ensuring consistent crossings at the equator in the

spatial domain by solving the following equation:

Ω̇liTli = ωe(Tpp − Tli) (5.18)

with

T = Ṁ + ω̇. (5.19)

In Equations 5.18 and 5.19, li stands for “lower inclined” and pp stands for “polar pair”. The

period of the satellites is given by T. The constraint given in Equation 5.18 guarantees that both

pairs of satellites complete the same number of orbital revolutions in the same number of nodal

days (l1 = l2), and ensures that the groundtracks of the satellites will cross each other at constant

lines of latitude. Unlike the case of two polar pairs, however, the crossings will not have consistency

in the time domain due to the discrepancy in periods between the two satellite pairs. Figure 5.12



www.manaraa.com

94

shows the groundtrack of two pairs of satellites over South America. The groundtrack displayed

in blue is from the polar pair of satellites while the groundtrack displayed in red is from the lower

inclined pair of satellites. It can be seen how the two pairs always cross at the same latitude.

Figure 5.12: Complementary groundtrack pattern shown over South America, arrived at by invoking
Equation 5.18

Table 5.5 shows the modified architectures necessary to obtain the complementary ground-

track patterns described above. Note that the altitude of the polar pair for each case, with the

exception of Case 9 and Case 14, has been raised by approximately 20-30 km. Cases 9 and 14 are

the same between Table 5.4 and Table 5.5 by the fact that the polar pair selected was already at

the appropriate altitude necessary for a complementary groundtrack pattern.

Figure 5.13 shows the error comparing the orbits from Table 5.4, with the lowest altitude

polar pair possible, with those from Table 5.5, with a complementary groundtrack pattern but a

slightly higher altitude for the polar pair of satellites.

Figure 5.13 shows a minor degradation in performance for five of the cases considered and a

minor improvement in performance for three of the cases considered. Cases 9 and 14 have the same

performance since they involve the same orbits. It is difficult to draw conclusions from these results.

Possible benefits from flying the satellites with a complementary groundtrack pattern include the

fact that the polar pair of satellites is at a higher altitude which means increased longevity due to

lower atmospheric drag forces. Also, the crossings at lines of constant latitude could prove beneficial
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Lower Inclined Pair Polar Pair

Case Rep. Per. Inclination Altitude Rep. Per. Inclination Altitude
(days) (deg) (km) (days) (deg) (km)

9 9 74 291 9 90 318

11 11 70 300 11 90 332

13 13 72 290 13 90 320

14 14 75 290 14 90 316

15 15 70 298 15 90 331

17 17 71 290 17 90 322

19 19 76 291 19 90 315

21 21 71 291 21 90 322

22 22 73 291 22 90 319

23 23 75 291 23 90 317

Table 5.5: Mission architectures examined with complementary groundtrack patterns
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Figure 5.13: A comparison of the error between the orbits in Table 5.4 with those in Table 5.5, which
have slightly higher altitudes for the polar pair of satellites but have complementary groundtrack
patterns

in future applications that are not yet realized; i.e. using the crossing points as constraint points

for determining the geopotential at particular locations. For a gravity mapping mission, analagous

to an altimeter mapping mission such as TOPEX or Envisat, there is an argument for having a

geometry between the two satellite pairs in terms of the groundtracks that permits a consistent

synoptic mapping of the time-variable gravity variations.
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5.4.6 Expected Performance

A detailed analysis on regional scales for the expected improvements that an optimized two-

pair architecture provides over a single pair architecture is given in Chapter 6. However, a global

comparison is shown in this section using the error metrics applied in this chapter. For this

comparison, we select Case 13 in Table 5.5 consisting of a polar pair of satellites coupled with a

lower inclined pair of satellites at 72o, both in 13-day RP orbits and possessing a complementary

groundtrack pattern as discussed in Section 5.4.5. Furthermore, we estimate daily 18x18 gravity

fields for this case to further reduce temporal aliasing errors as discussed in Chapter 4, which is an

additional advantage of having a polar pair coupled with a lower inclined pair. Figure 5.14 shows

the truth signals (left), recovered signals (middle), and error (right) for recovering hydrology and ice

mass variations (top) and ocean bottom pressure signals (bottom). The plots are represented out

to degree 60 and are expressed in cm of EWH. Table 5.6 illustrates the signal and error associated

with Figure 5.14 in cm of EWH.

Signal (cm) Error (cm)

Hydrology S(H) = 4.67 E(H) = 1.91

Ice S(I) = 2.12 E(I) = 3.31

Ocean S(O) = 2.46 E(O) = 2.41

Total S = 3.08 E = 2.54

Table 5.6: Signal and error associated with Figure 5.14. Units are expressed in cm of EWH.

Comparing the results from Figure 5.14 and Table 5.6 with those in Section 5.3 containing

the results of a single polar pair of satellites in a 13-day RP groundtrack illustrates the advantage

that strategically placing an extra pair of satellites provides. The global error, E is decreased by

approximately 75% with the addition of the second pair of satellites, with the largest improvement

coming in determining hydrology. As expected, the addition of the lower inclined pair substantially

reduces the level of striping in the solutions. There are certain bands of coefficients which remain

correlated, however. The large errors in the high latitude regions seen in Figure 5.14 are a direct

consequence of correlations in coefficients of a fixed order and same parity of degree in the range
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Figure 5.14: Truth signals (left), recovered signals (middle), and the error (right) for recovering
hydrology and ice mass variations (top row of plots) and ocean bottom pressure signals (bottom
row of plots) for Case 13 in Table 5.5 while estimating daily 18x18 gravity fields. Units are in cm
of equivalent water height.

n ≥ 40 and 3 ≤ m ≤ 14. Note that these errors occur predominantly in geographical areas

with latitudes higher than 72o, as no East-West information is present here. It is expected that

given a mission architecture of this type in the future, tailored filters will be developed to remove

such correlated errors, similar to that developed by Swenson and Wahr [2006]. One such option is

presented in Section 6.4. For the analysis presented here, however, it is seen that the solutions given

in Figure 5.14 without any post-processing techniques applied still retain significant geophysical

signals at small spatial scales.

5.5 Conclusions

The goal of this chapter was to optimize the orbits of two satellites pairs to provide increased

spatial resolution in determining hydrology, ice mass variations, and ocean bottom pressure signals

globally. While the search space for such a problem is, by nature, infinite, a Monte-Carlo analysis
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using numerical simulations to degree and order 100 is implemented in an effort to reduce it. A

search space originally consisting of fifteen variables is reduced to two variables with primary impact

on mission performance: the inclination of one of the satellite pairs (the other pair is assumed to

be polar), and the repeat periods of both pairs of satellites (shown to be near-optimal when they

are equal to each other). In this study we consider only circular orbits in repeating groundtracks,

a minimum allowable altitude of 290 km based on a projected 10-year mission lifetime, and assume

a 100 km inter-satellite separation distance between each pair of satellites. It is found that an

optimal value for the inclination of the second pair of satellites is between 70o and 75o, while an

appropriate range for the repeat periods of both satellite pairs is between 11 and 14 days. The

absolute lowest errors are given when both satellite pairs are in a 13-day repeat period, one being

polar at an altitude of 299 km, and the other inclined at 72o at an altitude of 290 km. It should be

noted that the results of this study are influenced by the targeted altitude for the mission as well

as the scientific goals of the mission.

The notion of optimizing the relative change in node and the argument of latitude between

the two pairs is discussed in relation to creating complementary groundtrack patterns. It is shown

that by raising the altitude of the polar pair, the nodal drift rate of the lower inclined pair can

be compensated for such that a groundtrack pattern with crossings at constant lines of latitude

is created. While numerical simulation results imposing this constraint are not conclusive as to

whether this definitively results in improved mission performance, there is an argument for having

a geometry that permits consistent global mapping of the gravity field. Finally, the importance of

extending simulations to high degree and order is shown.

Results show that with an optimized architecture consisting of two satellite pairs, the time-

variable gravity solutions do not need to be destriped or smoothed, resulting in a 75% reduction in

the level of errors over what one pair of satellites provides, and a gravity field product with much

higher spatial resolution. Chapter 6 provides an in-depth examination of the expected scientific

benefits of an optimized two-pair architecture, extending the analysis to local regions as well as

longer time spans.
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Expected Improvements in Determining Temporal Gravity Variations using

Two Satellite Pairs

6.1 Introduction

This chapter aims to quantify the expected improvements in determining hydrology, ice mass

variations, ocean bottom pressure signals, and earthquakes that having two pairs of dedicated

satellites provides over only a single pair. We compare three cases: a single pair of polar satellites,

two pairs of polar satellites, and a polar pair of satellites coupled with a lower inclined pair of

satellites. Based on the discussion and results in Chapter 5, we select a near-optimal architecture

for the case of two polar pairs as well as a polar pair coupled with a lower inclined pair.

6.2 Orbit Selection and Methodology

For the case of a polar pair coupled with a lower inclined pair of satellites, we select a near-

optimal architecture consisting of a polar pair of satellites at 320 km coupled with a lower inclined

pair of satellites at 72◦ at 290 km, both pairs being in 13-day repeating groundtracks (Case 13

in Table 5.5). This architecture ensures a groundtrack pattern where the two pairs of satellites

cross each other at constant lines of latitude. While perhaps not yet fully exploited, a groundtrack

pattern of this type is expected to be beneficial for future missions, allowing for consistent synoptic

mapping of time variable gravity variations. For the case of two polar pairs of satellites, we use

the same polar pair of satellites in the previously described architecture at 320 km altitude, and

add another pair of polar satellites offset in the node according to Equation 5.15. This permits
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consistent groundtrack crossings between the two pairs in time and space, and was found to be

optimal for the case of two polar pairs. The architecture involving one pair of satellites chosen

for comparison consists of the same polar pair of satellites common between the two architectures

described above: a pair at 320 km in a 13-day repeating orbit. Figure 6.1 shows the groundtracks

of all three cases, with the one-pair architecture (left), two polar pairs (middle), and a polar pair

coupled with a lower inclined pair (right). The top set of plots shows the groundtracks over the

entire globe, while the bottom set of plots shows the groundtracks over the Amazon so that one

can understand the nature of the crossings between the two pairs. Note that for the case involving

the lower inclined pair, this pair geographically extends to cover the southern half of Greenland as

well as the western Antarctic peninsula. All analyses and comparisons made in this chapter involve

these selected architectures.

Figure 6.1: Groundtrack over 13 days for the case of one pair of satellites (left), two polar pairs
(middle) and a lower inclined pair coupled with a polar pair (right). Groundtracks are shown for
the entire globe (top) and over the Amazon (bottom).

The numerical simulations performed in Chapter 5 have been extended for one full year to

quantify temporal gravity variations. Additionally, in this analysis, daily low degree and order

gravity fields are estimated simultaneously in an effort to reduce temporal aliasing errors, as de-

scribed in Chapter 4. For both cases involving two satellite pairs, we estimate 18x18 gravity fields

every day, as this has been shown to be near-optimal and effective. For the case of a single pair of

satellites, high frequency/low resolution gravity fields are not estimated. We do not estimate them
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for this case due to the variability in the quality of the groundtracks over two-day periods (it was

shown in Chapter 4 that two-day estimates are necessary to gain an accurate low degree gravity

field estimate for the case of a single pair of satellites). Additionally, the solutions from one pair

of satellites necessitate the standard post-processing procedures associated with GRACE (removal

of correlated errors and smoothing of the solutions) regardless of whether two-day gravity fields

are estimated or not; thus, negating any reduction in errors that performing the two-day estimates

provides.

6.3 Covariance Analysis

Figure 6.2 shows the logarithm of the formal errors (top row) along with the actual errors

(bottom row) for a simulation designed to recover hydrology and ice mass variations, as illustrated

in Table 3.1. The plots on the left are for one pair of satellites, the middle plots show the results for

two polar pairs, and the results on the right are for a polar pair coupled with a lower inclined pair.

The covariance analysis indicates that a polar pair coupled with a lower inclined pair is expected

to have substantially lower errors for the entire spectral domain of spherical harmonic coefficients,

with particular improvements in determining the sectorials and near-sectorials. Two polar pairs

of satellites shows a slight reduction in the formal errors over what one pair of satellites provides,

albeit retaining the same error pattern. For the case of a single pair of satellites and two polar

pairs of satellites, the actual errors show that higher degree and order tesseral harmonics are poorly

determined, as is expected via the covariance analysis. Additionally, it is seen that the actual errors

manifest themselves at the resonant order and multiples of the resonant order (m = 16, 32, 48, ...)

(this is more dominant in the case of one pair of satellites than the case of two polar pairs). These

can be reduced via estimating empirical accelerations with a frequency of once per revolution,

twice per revolution, and so on. Many of the GRACE processing centers employ this step during

their estimation schemes. While we have found that this step does reduce the errors at the resonant

order and multiples of the resonant order, the resulting gravity field estimates still have longitudinal

stripes, requiring standard post-processing procedures. Once these post-processing procedures have
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been invoked, there are negligible differences in the resulting gravity field estimates whether we

estimate empirical once per revolution and twice per revolution acceleration terms or not; hence,

we forgo this step. With the addition of the lower inclined pair of satellites, the bands of error at

the resonant order and multiples of the resonant order diminsh substantially. The highest errors

are seen at the high degree and order tesseral harmonic coefficients, beginning at approximately

degree 60. The larger errors for high degree and low order coefficients are a localized effect over

the polar regions at latitudes greater than 72◦ where only North-South information is present in

the observable.

Figure 6.2: Logarithm of the formal error of the spherical harmonic coefficients (top row) for one
pair of satellites (left), two polar pairs of satellites (middle) and a polar pair coupled with a lower
inclined pair of satellites (right), along with the logarithm of the actual error in the spherical
harmonic coefficients (bottom row)

It is also instructive to examine correlations between spherical harmonic coefficients. One

cause of the longitudinal striping in the GRACE solutions is that coefficients of a fixed order and

the same parity of degree are highly correlated due to the North-South alongtrack observable.

Figure 6.3 shows the correlations for a resonant coefficient C(18,16) (top row), a tesseral coefficient
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C(24,20) (middle row), and a sectorial coefficient C(30,30) (bottom row) for both the one-pair

architecture (left column), two polar pairs (middle column), and a polar pair coupled with a lower

inclined pair (right column). Plotted is the correlation of that particular coefficient with the other

spherical harmonic coefficients, up to degree 60.
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Figure 6.3: Correlation coefficients of selected spherical harmonic coefficients with others. The left
column is the correlation coefficients for one satellite pair, the middle column is for two polar pairs,
and the right column contains the correlation coefficients for a polar pair coupled with a lower
inclined pair. Shown are the C(18,16) coefficient (top row), C(24,20) coefficient (middle row), and
the C(30,30) coefficient (bottom row).
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Figure 6.3 shows for the case of one satellite pair (left column), the correlations between

coefficients of the same order and same parity of degree are easily recognizable. Additionally, there

are other random correlations between coefficients that might otherwise not be expected. With

the addition of the second polar pair of satellites, these same correlations persist, indicating that

longitudinal striping will still be present in the gravity solutions. With the addition of the lower

inclined pair of satellites, the correlations decrease substantially. There still exist correlations with

coefficients of the same order and same parity of degree; however, these correlations are lower than

the case of one satellite pair and less coefficients are correlated. The decrease in correlations allows

the filter to better separate between coefficients and obtain a better estimate of the gravity field.

This is reflected in the plot of errors shown in Figure 6.2.

6.4 Post-Processing Techniques Applied

As discussed in Section 1.4, solutions obtained using a single polar pair of satellites have

correlated errors, as well as errors at high degrees, which tend to dominate the gravity solutions.

These errors are readily seen in Figures 6.2 and 6.3. Typical users of the GRACE data handle

these errors by applying post-processing techniques. For our analysis, given the case of one pair

of satellites, we remove correlated errors via Swenson and Wahr [2006] (known as destriping),

and smooth the solutions via Gaussian smoothing [Jekeli , 1981; Wahr et al., 1998] with a 300

km averaging radius. This was found to be adequate to accurately resolve mass variations for

the one-pair solutions. The destriped and smoothed solutions will be denoted as ‘DS’ throughout

this chapter. Additionally, it will be shown in the next section that two polar pairs of satellites

necessitates the same post-processing techniques used for one pair of satellites.

The solutions obtained from a polar pair of satellites coupled with a lower inclined pair of

satellites have a completely different error spectrum than that of one pair, as shown in Figures

6.2 and 6.3. As such, an entirely different suite of post-processing tools could be developed for

analyzing solutions of this type. As was shown in Figure 5.14, the recovered hydrology, ice, and

ocean bottom pressure signals plotted to degree 60 tend to have errors in high latitude regions,
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above the latitude which is covered by the lower inclined pair. This is a direct consequence of only

having North-South information in these areas. Examining the errors in Figure 6.2 up to degree

60, it is seen that there are larger errors for coefficients with low order (m ≤ 16) and high degree

(n ≥ 40). We can examine the spatial representations of this band of coefficients to see where they

manifest spatially. Figure 6.4 shows the spatial representation of nine coefficients in this range. It

is seen that these coefficients describe signal that is predominantly in the geographic areas that

have the largest errors due to a lack of East-West information, showing consistency between Figures

5.14 and 6.2.

Figure 6.4: Spatial representation of select spherical harmonic coefficients in the range m ≤ 16,
n ≥ 40.
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It is also beneficial to examine the actual values of the recovered spherical harmonic coeffi-

cients from the simulation used to produce Figure 5.14 involving a polar pair coupled with a lower

inclined pair. Figure 6.5 plots the value of the coefficients for orders 9 and 11 and degrees greater

than 40. Shown are the recovered coefficients from the simulation, the recovered coefficients after

they have been destriped via Swenson and Wahr [2006], and the truth coefficients (described by

GLDAS + ESA).
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Figure 6.5: Values of spherical harmonic coefficients for order 9 (top) and order 11 (bottom) over
degrees greater than 40. Shown are the value of the recovered coefficients from a simulation designed
to recover hydrology and ice mass variations using a polar pair of satellites coupled with a lower
inclined pair of satellites, along with the truth value of the coefficient defined by the hydrology and
ice models, and the value of the recovered coefficient after it has been destriped via Swenson and
Wahr [2006].

The ‘sawtooth’ behavior of the recovered coefficients is evident in Figure 6.5. This mimics

the behavior of the recovered coefficients for one pair of satellites, as was shown in Swenson and

Wahr [2006], revealing unrealistic correlations of coefficients of a fixed order and the same parity

of degree. As we know, this error manifests itself as longitudinal stripes in the gravity solutions. It

is seen that after we apply the destriping algorithm, these correlations are removed, and the new

coefficients match much more closely to the truth. It should be emphasized that these correlations
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only exist for the range of coefficients defined by m ≤ 16, n ≥ 40. This data indicates that we

may be able to destripe coefficients only in this limited range to remove correlated errors and gain

better estimates of mass variations in latitudes greater than 72◦.

We find that applying the destriping algorithm described in Swenson and Wahr [2006] to

the range of coefficients described by 3 ≤ m ≤ 14, n ≥ 40 provides optimal results. Note that the

gravity solutions are still truncated at degree 60, as we wish not to deal with the errors in higher

degree and order tesseral coefficients, as seen in Figure 6.2. For fair comparison, the solutions

obtained from one pair of satellites are also truncated at degree 60. The effectiveness of this

modified filter to remove correlated errors from the solution involving a polar pair and a lower

inclined pair of satellites is shown in Figure 6.6. This figure is a continuation of the results shown

in Figure 5.14 for recovering OBP. The recovered OBP signal is shown on the left, along with the

recovered signal after correlated errors have been removed via the modified destriping algorithm

(middle). The plot on the right shows the signal that was removed via the destriping of the limited

range of spherical harmonic coefficients. In essence, it is the difference between the plot on the left

and the middle plot.

Figure 6.6: Recovered OBP variations from Figure 5.14 with no post-processing (left), after applying
the modified destriping algorithm (middle), and the difference between the left and middle plots
showing what signals were removed by applying the modified destriping algorithm (right). Plots
are averaged over 13 days and expressed in cm of EWH.

Figure 6.6 shows that this modified destriping algorithm specifically targets the errors at

high latitudes and removes them. The signals at lower latitudes (i.e. continental hydrology) are
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relatively untouched by this algorithm. As such, it is recommended that this algorithm be applied

if the user were examining ice mass variations in Antarctica, the northern half of Greenland, Arctic

sea ice, or OBP variations at high latitudes.

To conclude this section of text, the following post-processing procedures are applied to the

data throughout the remainder of the dissertation. Solutions obtained using one pair of satellites

are destriped via Swenson and Wahr [2006] and smoothed with a 300 km Gaussian averaging

radius. The same post-processing is applied to the solutions obtained from two pairs of polar

satellites. For the case of a polar pair of satellites coupled with a lower inclined pair of satellites, no

post-processing is applied. If the modified destriping algorithm is applied, then it will be stated as

such. Solutions from all architectures are truncated at degree and order 60. Any deviations from

these standard post-processing procedures will be stated.

6.5 Results: A Global Perspective

6.5.1 Hydrology and Ice Mass Variations

The expected spatial resolution that all three cases offer in recovering hydrology and ice

mass variations is illustrated in both the spatial domain (Figure 6.7) as well as the spectral domain

(Figure 6.8). Figure 6.7 shows the truth hydrology and ice signals (top), along with the recovered

signals with no post-processing (middle row) for one pair of satellites (left), two polar pairs of

satellites (middle), and a polar pair coupled with a lower inclined pair of satellites (right). The

bottom row shows the recovered signals after the solutions have been post-processed via the methods

discussed in Section 6.4. The solutions are averaged over a single 13-day timespan, have been

truncated at degree 60, and are expressed in cm of EWH.

Figure 6.7 illustrates that both the cases of one pair and two polar pairs necessitate the

destriping and smoothing processes. While the overall level of error is lower for the case of two

polar pairs, the fact that the error pattern is the same as the case of one pair indicates the best

way to remove the longitudinal stripes is to destripe via known techniques. Once the solution
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Figure 6.7: The top plot shows the truth hydrology and ice signals averaged over 13 days. The
middle row shows the recovered signals for: one pair of satellites (left), two polar pairs (middle), and
a polar pair coupled with a lower inclined pair (right). The bottom row shows the same recovered
signals, only after post-processing has been applied. The one pair and two polar pair architectures
have been destriped and smoothed with a 300 km averaging radius, while the architecture consisting
of a lower inclined pair and a polar pair has been destriped via the modified algorithm. Units are
in cm of EWH.

is destriped and smoothed (as is also necessary), the recovered mass variations are identical to

those recovered using one pair of satellites, and are damped and smoothed with respect to the

truth signals. This indicates a very important result in that while the temporal resolution will be
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Figure 6.8: Geoid degree error for recovering hydrology and ice mass variations in Figure 6.7 with
no post-processing (left) and with post-processing (right).

increased by a factor of two, one cannot expect much improvement in spatial resolution simply by

adding another polar pair of satellites due to the presence of longitudinal stripes. Other methods to

remove these correlated errors may disprove this statement; however, it was not within the scope of

the project to test all available methods to remove correlated errors. The solution obtained using

a polar pair of satellites coupled with a lower inclined pair of satellites closely resembles that of

the truth signal, particularly at latitudes below 72o. There are spurious errors in the northern half

of Greenland as well as Antarctica which are shown to be removed once the modified destriping

algorithm is implemented.

Figure 6.8 shows the error in terms of geoid height in determining hydrology and ice mass

variations over a particular 13-day timespan as a function of spherical harmonic degree for all

three cases. The plot on the left is when no post-processing is applied, and the plot on the right

is after the solutions have been post-processed as described to obtain the results in Figure 6.7.

Generally, the expected spatial resolution is approximated by ∼ 40, 000/2n km. It is seen that with

one pair of satellites, the errors become larger than the signal that is being estimated somewhere

between degree 15 and 25 (corresponding to basin sizes of 800 and 1300 km), two polar pairs

of satellites increases the spatial resolution to 670 km (corresponding to degree 30), while the

addition of the lower inclined pair of satellites increases the spatial resolution to approximately
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450 km (corresponding to degree 45). After the solutions from one pair of satellites and two polar

pairs of satellites are destriped and smoothed, the spatial resolution increases to be approximately

commensurate with that of the case involving the lower inclined pair of satellites. One cannot,

however, take the results in Figure 6.8, and assume that one pair of satellites provides the same

spatial resolution that a polar pair coupled with a lower inclined pair provides. A global analysis of

this kind is insufficient, as it disregards the different spatial distributions of signals and errors, as

pointed out by Han and Ditmar [2008]. As such, regional analyses are necessary to more accurately

quantify the expected improvements that the addition of a second pair of satellites provides.

6.5.1.1 EOF Analysis

We use Empirical Orthogonal Functions (EOFs), as discussed in section 2.3.1.3 to analyze

the time series of recovered hydrology and ice signals globally. This technique has been successfully

applied to GRACE data for many applications, for example Wouters and Schrama [2007]. Figure

6.9 shows the first (left column) and second (right column) modes for hydrology and ice signals,

which together account for 82% of the variance (the first mode accounts for 69% and the second

mode accounts for 13%). Similarly, Figures 6.10 and 6.11 show the third and fourth, and fifth

and sixth modes, respectively. The first six modes together account for 98% of the variance. The

EOFs were constructed using 27 13-day solutions spanning the year. The time series are shown

on the top row followed by the spatial respresentations of the truth signal (second row), recovered

signals using a polar pair coupled with a lower inclined pair (third row), and recovered signals

using one satellite pair (bottom row). Recovered signals from two polar pairs are not shown, as

the results are identical to those from one pair of satellites after post-processing has been applied.

The one-pair solutions have been destriped and smoothed with a 300 km averaging radius. The

two-pair solutions have been destriped via the modified destriping algorithm (referred to as D*).

Including this step in the analysis generally improves the EOF results, due to the global nature of

this technique.

The EOF analyses shown in Figures 6.9, 6.10, and 6.11 reveal that the first five modes are
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Figure 6.9: EOF analysis for recovering hydrology and ice signals. Shown are mode 1 (left column)
and mode 2 (right column) with the time series (top row), truth signal(second row), recovered
signal using two pairs with modified destriping (third row), and recovered signal using one pair
with destriping and 300 km smoothing (bottom row). Units are in cm of EWH.
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Figure 6.10: EOF analysis for recovering hydrology and ice signals. Shown are mode 3 (left column)
and mode 4 (right column) with the time series (top row), truth signal(second row), recovered
signal using two pairs with modified destriping (third row), and recovered signal using one pair
with destriping and 300 km smoothing (bottom row). Units are in cm of EWH.
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Figure 6.11: EOF analysis for recovering hydrology and ice signals. Shown are mode 5 (left column)
and mode 6 (right column) with the time series (top row), truth signal(second row), recovered
signal using two pairs with modified destriping (third row), and recovered signal using one pair
with destriping and 300 km smoothing (bottom row). Units are in cm of EWH.
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captured fairly well with two satellite pairs, but anything beyond that (i.e. the sixth mode) is

poorly determined. It is seen that the first mode contains the annual signal. The second and third

modes are most likely a precipitation mode with an annual variation. Given that they have the

same time series, it is thought that the third mode is most likely a correction factor being applied

to the second mode. The remaining modes shown (fourth, fifth, and sixth) reveal mass variations

with higher frequencies, including the semi-annual signal. Perhaps the most impressive result from

the EOF analysis is the ability of two satellite pairs to accurately resolve mass variations on much

finer spatial scales than one satellite pair. A visual inspection of the recovered modes (particularly

for the second mode) reveals small-scale hydrology signals in each continent (i.e. Alaska, central

Africa, India, Australia) that are detected using two satellite pairs which are either not detected,

or smoothed over, using one pair of satellites.

One does need to take care when comparing the recovered modes from each architecture,

as each mission architecture recovers signals differently spatially and temporally. As such, the

EOF analysis could reveal different modes (allowing for poor comparisons) between the cases. For

example, examining the time series of the third mode shows that for the case of one satellite pair,

the EOF analysis may be revealing a different mode than the truth signal, since the time series of

mass variations increases towards the end of the year rather than decreases. Great care must be

taken when making such comparisons. Perhaps a more fair comparison would be to take the first

five modes from each case, add them together, then compare the ability of each architecture to

recover mass variations in regions over the globe (using the first five modes only). This analysis is

not performed here, as we already perform significant regional analysis using all the data; however,

this process could lend additional insight into the problem.

Figure 6.12 shows the percent variance captured by the first 10 modes for each architecture.

This analysis again reveals that great care must be taken when making the EOF comparisons. For

example, the first mode for the truth model contains 69% of the total variance, while the first mode

of the recovered signal using two satellite pairs contains only 60% of the total variance. Despite

the discrepancy in percent variance captured, Figure 6.9 reveals excellent agreement both in space
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and time between the truth signal and recovered signal using two satellite pairs for the first mode.

The difference in the percent variance indicates that the two-pair solutions have higher modes with

more power than the truth signal. Much of this power is contained in longitudinal stripes with

low amplitude (as they have not been removed from the solutions via destriping processes and still

exist due to small correlations between coefficients of a fixed order (see Figure 6.3)), and begin

showing up in the sixth mode, as seen in Figure 6.11. Additionally, this analysis indicates that

care must be taken when interpreting the GRACE results via EOF analysis. There is a large error

bar when interpreting the percent variance in recovered signals, as well as the spatial and temporal

signatures of the modes.
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Figure 6.12: Percent variance captured by the first 10 modes

6.5.2 Ocean Bottom Pressure

The same analysis that was shown in Figures 6.7 and 6.8 can be performed for recovering

OBP signals as well. Figure 6.13 and 6.14 show the ability of each architecture to recover OBP

signals in the spatial domain and spectral domain, respectively. The top plot in Figure 6.13 shows

the truth OBP signal which is being recovered. The middle row of plots shows the recovered signals

with no post-processing applied: the left plot corresponding to solution obtained from one pair,

the middle plot is for two polar pairs, and the right plot is for a polar pair coupled with a lower
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inclined pair. The bottom row of plots indicates the solutions after post-processing techniques have

been applied. Note that for this case, the solution obtained from the polar and lower inclined pair

has been destriped via the modified destriping algorithm and smoothed with a 200 km averaging

radius. The plots are truncated at degree 60, averaged over 13 days, and expressed in cm of EWH.

Figure 6.13: The top plot shows the truth OBP signals averaged over 13 days. The middle row
shows the recovered signals for: one pair of satellites (left), two polar pairs (middle), and a polar
pair coupled with a lower inclined pair (right). The bottom row shows the same recovered signals,
only after post-processing has been applied. The one pair and two polar pair architectures have
been destriped and smoothed with a 300 km averaging radius, while the architecture consisting of
a lower inclined pair and a polar pair has been destriped via the modified algorithm and smoothed
with a 200 km averaging radius. Units are in cm of EWH.
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Similar to the result obtained from recovering hydrology and ice mass variations, Figure 6.13

shows that the solution obtained using two polar pairs of satellites still has predominant longitudinal

striping in the solution, albeit smaller in magnitude than that with one pair of satellites. Once the

solutions have been destriped and smoothed, the resulting signals are extremely similar, and have

minor discrepancies. The solution obtained using a polar pair and lower inclined pair of satellites has

considerably less error than the other two cases. However, there is noticeable longitudinal striping in

the solution, unlike the results shown in Figure 6.7 pertaining to recovering hydrology and ice mass

variations. The reason for this is simply a matter of scale: OBP signals are smaller in magnitude

than hydrology and ice signals, hence, there is a smaller signal to noise ratio when detecting them.

Errors which manifest as longitudinal stripes simply are not as visible in Figure 6.7 because the

magnitude of the hydrology and ice mass variations is so much larger than the magnitude of the

stripes. We have found that smoothing the OBP solutions with a 200 km averaging radius gives

similar results as destriping and smoothing the one-pair results with a 300 km radius. Alternately,

one could truncate at a lower degree to remove the stripes, as they predominantly manifest from

errors in higher degree terms. Note that the errors at high latitudes have been removed via the

modified destriping algorithm. Comparing all three post-processed cases reveal minor discrepancies

between them due to the commonality of smoothing invoked. However, there are certain signals,

particularly those off the coast of Alaska and in the Southeast Pacific Ocean, which appear to be

better determined with the addition of a lower inclined pair of satellites. Again, regional analyses

are necessary to further investigate the differences.

Finally, Figure 6.14 displays the error of each architecture in recovering OBP signals in terms

of geoid height as a function of spherical harmonic degree. Again, the left plot is for solutions with

no post-processing and the plot on the right is after the solutions have been post-processed via

the same techniques as for Figure 6.13. This plot shows minor improvements with the addition of

the second polar pair of satellites. The addition of the lower inclined pair of satellites improves

the solution even more at high degrees. However, the error for all three cases is shown to exceed

the power in the signal at approximately degree 15, indicating near-equal performance between
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the three cases. After post-processing, the solutions are nearly identical. Regional analyses are

necessary to further quantify improvements that adding a second pair of satellites provides in

determining OBP variations. It is expected that the addition of the lower inclined pair will provide

increased spatial resolution for determining local signals, as the error is shown to be only slightly

above the power in the signal out to degree 30, where the other cases have considerably higher

error at this point.
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Figure 6.14: Geoid degree error for recovering OBP signals in Figure 6.13 with no post-processing
(left) and post-processing (right)

6.5.3 Dominant Error Source

It is worthwhile to understand what the dominant source of error is associated with these

hypothetical mission architectures. Figure 1.2 separates the error sources for an architecture in

a 30-day repeat period at a higher altitude. We can perform the same analysis for the mission

architectures considered here, at a lower altitude and in a 13-day repeat period. Figure 6.15

shows the geoid degree error for the one satellite pair architecture (left) and the architecture

consisting of a polar pair coupled with a lower inclined pair of satellites (right). Each error source

has been isolated such that its individual effect can be studied. The AOD errors are given by

mismodelling atmosphere and ocean models while the tide errors are given by mismodelling the

tides. The hydrology and ice errors are given by the undersampling of these phenomena over the



www.manaraa.com

120

13-day timespan, and the measurement system errors are defined as the errors due to the laser

interferometer as well as the drag-free system onboard. It is seen that for both cases, errors in

determining the satellite positions have the least effect on the final solution while AOD errors

dominate the solution at low degrees. Errors from tide models become commensurate with those

from the AOD models at higher degrees.
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Figure 6.15: Geoid height error from isolated sources of error for one pair of satellites (left) and a
polar pair coupled with a lower inclined pair of satellites (right)

These results indicate that in order to further improve upon the two-pair solutions (and lower

the level of AOD errors), the sampling frequency of the mission would need to be increased through

the addition of more satellite pairs. While it is seen that AOD errors dominate the error budget

when averaged globally, one should not assume from this analysis that AOD errors will dominate

the error budget for all regions of interest, due to the complex space-time sampling characteristics

of signals and errors. As was shown in Loomis [2009], while AOD errors dominate the error

budget when looking at mass variations in Greenland, the largest source of error when determining

mass variations in the Amazon is actually due to undersampling hydrology. The reason for the

discrepancy is due to better knowledge of atmospheric mass variations in South America versus

Greenland. Hence, each specific region will have its own limiting source of error when determining

mass variations. Regional analysis identifying the dominant source of error for specific regions of
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interest is not performed in this study.

6.6 Results: A Regional Perspective

Analyzing the expected performance of a mission regionally is necessary to fully understand

its capabilities. In order to perform regional analyses, we use averaging kernels and spatiospectral

localization, the details of which are presented in Sections 2.3.2.1 and 2.3.2.2. Results in Section

6.6 showed that while the case of two polar pairs of satellites has lower errors than one polar

pair of satellites, correlated errors manifesting as longitudinal stripes still dominate the solutions.

Hence, these solutions necessitate standard GRACE post-processing techniques including destriping

and smoothing. Once these are applied to the solutions, the recovered mass variations are nearly

identical to those obtained using only one pair of satellites (after post-processing). Thus, one can

expect similar performance from the cases of one pair of satellites and two polar pairs of satellites.

As such, it is not necessary to examine the errors on a regional level, and the case of two polar

pairs of satellites is not discussed in this section. Any reference to two satellite pairs in this section

refers to the case of a polar pair of satellites coupled with a lower inclined pair of satellites.

6.6.1 Hydrology

The Amazon river basin has been the subject of many analyses using GRACE data due to

the magnitude of the signal as well as the large spatial extent of the region. This region makes

an excellent candidate to compare the capabilities of the one-pair and two-pair architectures using

the spatiospectral localization technique. A spherical harmonic expansion of degree Lh = 10 with

a spherical cap radius of θo = 45◦ is used to calculate the optimal windowing function. The results

from a single 13-day gravity solution are displayed in Figure 6.16.

Visually, one can see the improved spatial resolution that two pairs of satellites allow for in

this region over the case of one pair. As expected, the one pair results contain the longitudinal

stripes, and once these results are destriped and smoothed, the signals are damped and much of the

finer spatial resolution is lost. Figure 6.17 shows the localized signal to noise ratio (SNR) computed
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Figure 6.16: Spatiospectral localization technique applied to the Amazon region using θo = 45◦,
Lh = 10. Truth signal (top-left) along with the recovered signals from: two pairs of satellites (top-
right), one pair of satellites (bottom-left), and one pair of satellites DS (bottom-right) averaged
over 13 days. Units are in cm of EWH.

from a localized degree-RMS plot. It is seen that for two pairs of satellites, the SNR is positive out

to degree 50, corresponding to a spatial resolution of approximately 400 km. Alternately, for the

case of one pair of satellites, one could argue that information is only present out to approximately

degree 30, corresponding to a spatial resolution of approximately 667 km. Furthermore, the SNR

for two satellite pairs is substantially higher than for the case of one pair for all degrees greater

than 8, allowing for greater accuracy in determining the signal.

Next, we can use averaging kernels to calculate mass variations over the year in 53 different

hydrological basins shown in Figure 6.18. This selection of basins represents different basin sizes,

latitudes, geographic orientations, signal strenghts, etc, and gives a good sampling on the type of

performance one could hope to achieve with two pairs of satellites over one pair of satellites. Figure
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Figure 6.17: Signal to noise ratio for mass variations in the Amazon computed with the spatiospec-
tral localization technique (see Figure 6.16).

6.19 focuses on the results for the Fraser Basin (Basin 18), in northwestern British Columbia. Mass

variations for this analysis were calculated each day using a sliding boxcar filter with a window

width of 13 days centered on the day of interest. Each solution has approximately the same spatial

information in it, given that the orbits are in repeating groundtracks; however, it has different

space-time sampling characteristics. Note that these solutions are not true “daily” solutions in

the sense that solutions between days are independent from one another. In fact, independent

solutions will happen every 13 days. It is also not being argued that this type of filter is optimal for

recovering mass variations each day, as other filters have been explored for this purpose, including

using a Gaussian filter similar to the boxcar filter that we use [Bonin, 2010], as well as using a

Kalman filter during the estimation process to gain daily solutions [Kurtenbach et al., 2009]. This

simple analysis, however, allows one to see the variability in the solutions resulting from replacing

a single day of data.

Figure 6.19 illustrates the mass variations in the basin calculated using an averaging kernel

over the entire year in daily increments. Shown are the solution for one pair of satellites with no

post-processing, the one pair solution that has been destriped and smoothed, the one pair solution

that has been destriped and smoothed with a scale factor (SF) applied, and the solution given two
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Figure 6.18: Map showing the location of the 53 hydrological basins for which averaging kernels
are computed
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Figure 6.19: Mass variations calculated in the Fraser Basin (Basin 18) over the year for one pair
of satellites, one pair of satellites DS, one pair of satellites DS with a scale factor applied, and for
two pairs of satellites.

pairs of satellites. Scale factors are used within the GRACE community to account for signal that
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the destriping and smoothing processes remove from the solution including leakage error. Typically,

they are calculated by taking a model representing mass variations in the region, destriping and

smoothing that model, and calculating how much mass has been removed via these processes. A

scale factor is then calculated to restore this lost mass. For this study, we calculated scale factors

three ways: (1) using the truth GLDAS hydrology model, (2) using an alternate hydrology model

provided by the European Space Agency (ESA), and (3) using a uniform mass distribution over

the basin. It was found that the scale factor computed was extremely sensitive to which method

was used due to the empirical nature of the destriping filter. In fact, using a scale factor from

methods (2) and (3) provided worse results on average than not using a scale factor at all. Thus, it

was decided to compute scale factors using method (1): destriping and smoothing the truth model.

This leads to overly-optimistic results for the case of one pair of satellites, as it represents the best

possible scale factor one could hope to compute. Hence, the actual level of mass variations for

one pair of satellites that one would compute most likely lies somewhere between the case of not

applying any scale factor, and the case of applying the best possible scale factor.

Figure 6.19 illustrates that the signal calculated using one pair of satellites, but without post

processing, has extremely large variability, varying by as much as 15 cm EWH from one time step

to the next. Once the solution is destriped and smoothed, the variability in the solution decreases

substantially; however, the signal is damped in amplitude with respect to the truth signal. Figure

6.18 illustrates that the Fraser Basin is predominantly oriented in the North-South direction. As

such, the destriping process removes a substantial amount of signal (in addition to error) from

the basin since the empirical filter developed by Swenson and Wahr [2006] is designed to remove

North-South features. After applying the scale factor to account for this loss of signal, the one

pair solution compares fairly well with the truth signal. The solution obtained from two pairs

of satellites, however, still agrees much better with the truth signal than the best-case scenario

involving one pair of satellites. The reader should be reminded, as well, that no post-processing

has been applied to the solution involving two pairs of satellites.

Figures 6.20, 6.21, 6.22, and 6.23 show the mass variations over the year for all 53 hydrological
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basins. The case of one polar pair with no post-processing is not shown in this series of plots due

to the large errors associated with it. There are certain basins which have the same recovered mass

variations using one pair of satellites whether a scale factor is applied or not. This is a unique

circumstance in which the scale factor is calculated to be equal to 1, or has been manually set to 1

due to an unreasonably large calculated value for the scale factor. A close examination of the mass

variations over the year for all basins reveals the additional accuracy provided with the addition of

a lower inclined pair of satellites (see particularly Basins 1, 2, 19, 21, 22, 24, 32, 36, and 50).

Table 6.1 summarizes the results in Figures 6.20, 6.21, 6.22, and 6.23, showing the RMS of

the errors (in cm of EWH) calculated over the year for all 53 basins that were analyzed. Listed are

the name of each basin, the area, the amplitiude (amp.) of the signal in the basin over one full year

(taken to be half of the peak-to-peak amplitude), as well as the RMS of the error for each case.

Note that ‘reg’ stands for ‘regular’ and indicates no post-processing.

Table 6.1: Hydrological Basins and the RMS of the error in determining mass variations
in each basin over one full year for the cases of one pair of satellites, one pair of satellites
destriped and smoothed, one pair of satellites destriped and smoothed with an optimal scale
factor applied, and two pairs of satellites

Basin Basin Area Amp. One Pair RMS (cm) Two Pairs
No. Name (km2) (cm) Reg. DS DS/SF RMS(cm)

1 Khatanga-Popigai 501,552 6.58 5.68 1.68 1.26 0.66
2 Olenek 309,322 2.83 4.24 1.69 1.00 0.82
3 Lena 2,415,920 3.51 1.56 0.78 0.79 0.78
4 Yana 242,039 2.97 11.26 1.54 1.29 0.98
5 Indigirka 341,076 3.33 10.95 1.51 1.99 1.23
6 Yenisei 2,376,483 4.38 2.32 0.81 0.79 0.64
7 Kolyma 617,341 5.51 5.19 2.09 1.83 1.53
8 Taz 382,104 10.87 7.26 1.36 1.08 0.79
9 Mackenzie 1,770,040 4.53 1.26 1.01 0.92 0.63
10 Pechora 254,272 10.52 7.06 1.65 1.29 1.24
11 Ob 3,012,693 7.59 1.32 0.91 0.92 0.74
12 Severnaya Dvina 661,781 10.91 1.79 1.22 0.98 0.89
13 Anadyr 410,068 5.12 6.57 2.02 1.46 1.26
14 Yukon 940,852 5.90 2.47 1.42 1.39 0.95
15 Nelson 1,693,827 4.18 1.54 0.67 0.62 0.52
16 Ural 312,629 5.35 4.92 1.07 1.14 1.09

Continued on next page
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Table6.1 – continued from previous page

Basin Basin Area Amp. One Pair RMS (cm) Two Pairs
No. Name (km2) (cm) Reg. DS DS/SF RMS(cm)

17 Amur 2,876,880 3.87 1.28 0.82 0.85 0.63
18 Fraser 357,057 11.15 6.04 4.14 1.83 0.77
19 Saint Lawrence 1,263,145 6.04 1.63 1.21 1.20 0.47
20 Volga 1,580,750 6.17 1.41 0.94 0.91 0.65
21 Dnieper 446,335 8.34 2.85 1.21 1.15 0.73
22 Don 278,565 7.21 6.75 2.21 1.96 1.05
23 Columbia 1,048,534 6.56 2.79 1.95 1.07 0.63
24 Danube 836,815 10.47 2.23 1.76 1.19 0.64
25 Yellow River 1,872,050 4.12 1.40 0.88 0.91 0.66
26 Colorado (U.S.) 838,512 1.32 2.65 0.83 0.93 0.79
27 Yangtze River 1,833,747 4.34 1.56 0.92 0.93 0.62
28 Mississippi 3,525,101 4.19 0.90 0.53 0.53 0.46
29 Nile 3,761,542 3.54 1.94 0.92 0.96 0.57
30 Shatt al-Arab 1,732,018 2.39 2.11 0.95 1.04 0.64
31 Rio Grande 1,021,678 3.54 2.37 1.05 1.49 0.85
32 Indus 1,429,312 3.19 2.17 1.05 1.18 0.70
33 Ganges 1,920,796 10.12 1.53 1.23 0.82 0.62
34 Pearl River 439,492 9.22 3.64 1.42 1.33 1.30
35 Irrawaddy 296,014 3.94 8.54 2.14 0.91 1.89
36 Salween 1,014,279 2.63 3.67 1.48 1.35 0.93
37 Sénégal 765,749 3.49 2.47 0.99 0.91 1.25
38 Mekong 743,472 11.34 3.01 2.91 1.63 1.26
39 Orinoco 1,255,019 10.04 1.99 1.28 1.08 0.95
40 Magdalena 195,874 9.59 8.76 2.69 2.01 1.81
41 Volta 572,618 12.17 3.24 1.43 1.15 1.14
42 Niger 6,918,253 4.83 0.97 0.74 0.70 0.39
43 Jubba 627,755 4.63 3.05 0.99 1.18 1.14
44 Amazon 6,129,528 8.11 0.97 0.82 0.74 0.49
45 Tocantins 1,011,450 18.44 3.62 3.22 2.09 1.29
46 Zaire 4,449,039 3.57 1.02 0.92 0.91 0.56
47 São Francisco 904,455 8.89 3.26 1.59 1.62 1.18
48 Victoria 816,232 7.90 3.50 1.12 1.12 1.14
49 Zambezi 2,351,974 10.18 1.19 1.32 0.84 0.52
50 Oranje 891,596 2.15 2.03 1.66 1.66 0.80
51 Paraná 3,635,738 7.38 1.34 1.40 1.10 0.48
52 Murray 2,452,873 2.63 1.92 1.06 1.09 0.76
53 Colorado (Argentina) 659,923 3.46 4.54 0.89 1.01 1.16

RMS of RMS 4.22 1.55 1.23 0.94

Studying the RMS values in Table 6.1 reveals that in all but four of the basins, two pairs of

satellites have a lower RMS than for the case of one pair of satellites being destriped and smoothed
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Figure 6.20: Comparison of recovered hydrological mass variations in Basins 1-15. Shown are the
truth signal (black), and recovered signals from one pair (green), one pair DS (blue), and two pairs
(red).
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Figure 6.21: Comparison of recovered hydrological mass variations in Basins 16-30. Shown are the
truth signal (black), and recovered signals from one pair (green), one pair DS (blue), and two pairs
(red).
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Figure 6.22: Comparison of recovered hydrological mass variations in Basins 31-45. Shown are the
truth signal (black), and recovered signals from one pair (green), one pair DS (blue), and two pairs
(red).
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Figure 6.23: Comparison of recovered hydrological mass variations in Basins 46-53. Shown are the
truth signal (black), and recovered signals from one pair (green), one pair DS (blue), and two pairs
(red).

with an optimal scale factor applied. It has a lower RMS than the one-pair case with no post-

processing 100% of the time. Furthermore, if one looks at the effect of applying the scale factor, it

is seen that in some cases, the scale factor actually makes the solution slightly worse. This indicates

the risks that one takes by applying scale factors to the mass estimates. Even given an optimal

scale factor, the results sometimes degrade.

Finally, Figure 6.24 provides a summary, showing the RMS of the yearly error RMS values

for the 53 basins displayed in Table 6.1 for each case. From this chart, it can be concluded that two

pairs of satellites determine the hydrological mass variations in the basins with approximately 25%
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more accuracy than the case of one pair of satellites destriped and smoothed with an optimal scale

factor applied, 40% more accuracy than the case of one pair of satellites destriped and smoothed

with no scale factor applied, and 80% more accuracy than in the case of one pair of satellites with

no post-processing.
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Figure 6.24: RMS of the yearly error RMS values shown in Table 6.1 for determining mass variations
in the 53 hydrological basins. Units are in cm of EWH.

6.6.2 Ice Mass Variations

Ice mass variations are defined as mass variations in Greenland and Antarctica. Unfortu-

nately, a model defining glaciers was not available at the time of publication. In order to study

ice mass variations on a regional scale, Greenland has been subdivided into 12 basins, as shown

in Figure 6.25, in accordance with basin definitions given in Luthcke et al. [2006]. The melting of

Greenland around the coastal areas, particulaly the southern regions, has been the focus of many

recent investigations due to accelerating melting rates. As such, detailed simulation results for

mass variations in Basin 5, along the southwestern coast of Greenland, are shown in Figure 6.26.

Figure 6.26 paints a similar picture as that of the Fraser basin shown in Figure 6.19. The

solution from one pair of satellites is extremely noisy; however, once the solutions are destriped and

smoothed, the daily variability has decreased and the amplitude of the signal has been suppressed
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Figure 6.25: Map showing the location of the 12 Greenland basins
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Figure 6.26: Mass variations calculated in southwestern Greenland (Basin 5) over the year for one
pair of satellites, one pair of satellites DS, one pair of satellites DS with a scale factor applied, and
for two pairs of satellites.

with respect to the truth. This is in a large part due to the North-South orientation of this particular

basin, and the fact that the destriping process is designed to remove North-South features in the

gravity field. Once an optimal scale factor is applied, the amplitude has been restored and the
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calculated mass matches much closer to the truth. However, particularly for the first half of the

year, there is a poor estimate of the rate of mass increase. Two pairs of satellites, conversely, recover

the true mass variations in the basin with very good accuracy for the duration of the year. It should

be noted that no post-processing has been applied to the solution for two pairs of satellites.

Figure 6.27 shows the mass variations in all twelve Greenland basins over the year. Again,

the case of one polar pair of satellites with no post-processing is not shown due to the large scale

of the errors associated with this case.

Table 6.2 summarizes the results in Figure 6.27 and shows the calculated error RMS values

for all 12 Greenland basins over the year. For the sake of comparison, the RMS of the error

for the case of destriping the two-pair case via the modified destriping algorithm (indicated by

D*) with and without a scale factor applied is shown. It is seen that on average, destriping

the two-pair solutions slightly degrades the accuracy. The three basins that are improved when

destriping (without applying a scale factor) are Basins 2, 8, and 12, all of which are located at

higher latitudes. After applying an optimal scale factor, Basins 2, 3, 4, 8, 10, and 12 have improved

mass estimates; however, on average, the results are still slightly worse. It is not terribly surprising

that destriping via the modified algorithm results in overall slightly degraded results, since the

basins are at latitudes both above and below 72o. In all but 2 of the basins, two pairs of satellites

provide lower RMS values than the best case scenario using one pair of satellites. Two pairs of

satellites provide lower RMS values 100% of the time over what one pair of satellites provides with

no post-processing. Again, it should be noted that applying an optimal scale factor does not always

guarantee a better solution for the case of one pair of satellites, indicating that care must be taken

when applying scale factors to real data. Finally, the reason that the magnitude of the RMS values

are larger than those associated with hydrology has to do with several factors. First, as was shown

in Loomis [2009], AOD errors in Greenland are much larger than errors over areas such as the

Amazon, or North America, where there is much more data to have good AOD models. Second,

high degree resonant order coefficients manifest themselves spatially between 70o and 75o, which is

where Greenland lies. Particularly for the case of a single pair of satellites, the errors at high degree
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Figure 6.27: Comparison of recovered mass variations in all twelve Greenland basins over the year.
Shown are the truth signal (black), and recovered signals from one pair (green), one pair DS (blue),
and two pairs (red).

resonant coefficients are large, as seen in Figure 6.2, and as such, there is a substantial amount of

error at this latitude band.

Finally, Figure 6.28 summarizes the RMS of the yearly error RMS values displayed in Table

6.2 over the 12 Greenland basins. It can be concluded that on average, two pairs of satellites provide

mass estimates for Greenland that are approximately 55% more accurate than in the case of one
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Basin Area Amp. One Pair RMS (GT) Two Pairs RMS (GT)
No. (km2) (GT) Reg. DS DS/SF Reg. D* D*/SF

1 207,331 11.36 4.63 5.56 6.26 2.83 3.91 3.14
2 225,127 6.97 9.77 4.19 7.49 2.73 2.60 2.66
3 178,723 17.14 21.04 5.23 3.29 3.31 3.52 2.90
4 109,816 34.34 7.03 12.37 1.97 1.21 1.41 1.15
5 194,759 70.35 17.86 34.52 9.63 2.82 3.34 3.22
6 149,417 14.72 17.64 7.91 6.51 2.06 3.98 3.01
7 103,225 3.14 3.63 3.15 5.01 2.10 2.82 4.42
8 190,789 4.18 9.57 4.79 12.05 4.77 2.54 3.99
9 191,186 11.02 28.12 2.94 3.21 4.08 4.34 4.36
10 146,600 23.84 14.31 3.36 3.41 2.06 2.08 1.96
11 196,199 22.95 21.32 4.87 4.49 2.46 3.56 2.53
12 235,481 9.97 21.06 8.78 9.74 3.66 2.69 3.50

RMS of RMS 16.43 11.68 6.78 2.99 3.17 3.20

Table 6.2: Greenland Basins and the RMS of the error (expressed in GT of ice) in determining
mass variations in each basin over one full year for the cases of one pair of satellites, one pair of
satellites destriped and smoothed, one pair of satellites destriped and smoothed with an optimal
scale factor applied, and two pairs of satellites

pair of satellites that have been destriped and smoothed with an optimal scale factor applied, 75%

more accurate than in the case of one pair of satellites that have been destriped and smoothed

without applying a scale factor, and 80% more accurate than in the case of one pair of satellites

with no post-processing.

To confirm that two pairs of satellites does not degrade the ability to detect ice mass variations

in Antarctica, we do a simple mass balance estimate on the entire continent of Antarctica using

an averaging kernel. Figure 6.29 shows total mass in Antarctica over the year. The solutions from

one pair of satellites have been destriped and smoothed with a 300 km averaging radius, while the

results from two pairs of satellites have been destriped with the modified destriping algorithm. No

scale factors have been applied to the data as models for ice mass variations in Antarctica are not

expected to be very accurate. It is seen that the RMS of the errors is decreased by 38% using two

pairs of satellites versus one pair of satellites.
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Figure 6.28: RMS of the yearly error RMS values in determining mass variations in the 12 Greenland
basins. Units are in GT of ice.
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Figure 6.29: Mass variations calculated in Antarctica over the year for one pair of satellites DS,
and for two pairs of satellites D*.

6.6.3 Ocean Bottom Pressure Signals

Ocean bottom pressure (OBP) signals are, on average, much larger in spatial scale and smaller

in magnitude than hydrology or ice signals. The smaller magnitude of the signals indicates that

OBP signals will have a smaller SNR when recovering them than hydrology and ice mass variations,

making them more difficult to detect. As a result of this, OBP signals have been more difficult to

quantify using GRACE, and regional analyses of the data have been limited to a handful of studies.
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In this analysis, we use spatiospectral localization to analyze OBP signals in the Southeast Pacific

Basin. This particular basin is of interest due to high variability in the OBP signals, primarily

due to topographically trapped signals. Figure 6.30 illustrates the dipole signal in the Southeast

Pacific Basin via spatiospectral localization using a spherical cap radius of θo = 25◦ and maximum

degree of expansion Lh = 15. Shown are the 13-day average of the truth signal (top-left), and the

13-day averages of the recovered signal using two satellite pairs (top-right), one pair (bottom-left),

and one pair destriped and smoothed (bottom-right), expressed in cm of EWH.

Figure 6.30: Spatiospectral localization technique applied to the Southeast Pacific Basin using
θo = 25◦, Lh = 15. Truth signal (top-left) along with the recovered signals from: two pairs of
satellites (top-right), one pair of satellites (bottom-left), and one pair of satellites DS (bottom-
right) averaged over 13 days. Units are in cm of EWH.

Figure 6.30 shows that two pairs of satellites recover this signal particularly well. The signal

is not discernible with one pair of satellites and no post-processing. Once the solutions are destriped

and smoothed, the negative part of the dipole signal is present, although distorted spatially, while

the positive part is faintly present in the solution. Figure 6.31 illustrates the signal to noise ratio

as a function of spherical harmonic degree of the three cases. The solution obtained with two

pairs of satellites have a positive SNR out to approximately degree 35, while the destriped and
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smoothed solution using one pair of satellites has information until approximately degree 25 or so.

This represents an improvement in spatial resolution from 800 km to 571 km in determining this

particular signal.
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Figure 6.31: Signal to noise ratio for OBP signals in the Southeast Pacific Basin computed using
spatiospectral localization (see Figure 6.30).

Finally, we analyze mass variations over the year in this basin (boundaries given by 90◦-140◦

W, 35◦-55◦ S, as defined by Boening et al. [2011]) using an averaging kernel. Figure 6.32 shows

the ability of each architecture to recover OBP variations in the Southeast Pacific Basin. Figure

6.32 shows excellent agreement between the truth signal and the recovered signal using two pairs of

satellites, particularly during times of high variability. The RMS of the error is decreased by 72%,

from 1.25 cm to 0.36 cm, with the addition of the second pair of satellites. One pair of satellites

fails to capture much of the high frequency variability in OBP in this region.

6.6.4 Earthquakes

GRACE has been used effectively to determine coseismic and postseismic gravity deforma-

tions due to large earthquakes, in particular the 2004 Sumatra-Andaman earthquake [Chen et al.,

2007; Panet et al., 2007; Han and Simons, 2008] and the 2010 Maule, Chile earthquake [Han et al.,

2010; Heki and Matsuo, 2010]. It is our goal to quantify the expected performance that two satel-

lite pairs offers in determining mass changes due to the coseismic part of the earthquake signal via

spatiospectral localization. To perform this simulation, we use an earthquake model representative
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Figure 6.32: Mass variations in the Southeast Pacific Ocean over the year showing the calculated
mass from one pair of satellites, one pair DS, and two pairs of satellites.

of the magnitude 8.8 2010 Maule, Chile earthquake (available from the U.S. Geological Survey,

http://earthquake.usgs.gov). This model is introduced in the truth set of models as a step function

that is added to the static gravity field model, EIGEN-GL04C, and is then recovered in addition

to the hydrology and ice signals. We apply an optimal windowing function with θo = 25◦ and

Lh = 15 to analyze the signal. Figure 6.33 shows the modelled earthquake signal (top-left), the

recovered signal using two satellite pairs (top-right), the recovered signal using one pair of satellites

(bottom-left), and the recovered signal if the single satellite pair solution is destriped and smoothed

(bottom-right). The plots are expressed in cm of EWH. It should be noted that the positive mass

anomaly in the upper-right part of the truth signal is actually a hydrology signal in the Paraná

Basin that has been captured by the windowing function that is applied. It could be removed

via forward modelling to isolate the earthquake signal, but this was deemed unnecessary for the

purposes of this study. Figure 6.34 illustrates the localized SNR associated with the recovered

earthquake signal.

It is seen that while two pairs of satellites do an exceptional job of recovering the signal

with a high SNR out to degree 45, one pair of satellites is also capable of recovering the signal,

although with a lower SNR, particularly at low degrees. It is expected that two pairs of satellites

will be able to recover earthquakes lower in magnitude than what one pair of satellites can recover.
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Figure 6.33: Spatiospectral localization technique applied to recover a simulated signal similar to
the 2010 Maule, Chile earthquake, using θ = 25◦, Lh = 15. Truth signal (top-left) along with the
recovered signals from: two pairs of satellites (top-right), one pair of satellites (bottom-left), and
one pair of satellites DS (bottom-right) averaged over 13 days. Units are in cm of EWH.
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Figure 6.34: Localized SNR for recovering the simulated 2010 Maule, Chile earthquake
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The threshold of recovery will depend on the location of the earthquake, the magnitude of the

earthquake, as well as the type of earthquake. An extensive set of simulations varying the size,

strength, and type of earthquake is necessary to characterize a detection threshold that two pairs

of satellites offer over one pair. This analysis is not presented here; however, we have shown that

large earthquakes, such as the 2010 Maule, Chile earthquake can be detected with much greater

accuracy using two pairs of satellites over one pair of satellites.

6.7 A More Realistic Scenario: Higher Altitude and Measurement Noise

The work put forth in this dissertation has assumed the next generation of dedicated missions

to measure the gravity field will fly drag-free and utilize laser interferometry for inter-satellite

ranging. Additionally, it assumes that an appropriate operating altitude for such a mission will

be around 300 km. These assumptions undoubtedly lead to improved results over what GRACE

provides, which operates with less precise instruments and at a higher altitude. At the time of

publication, it is expected that the gap-filler mission to replace GRACE (estimated launch date

in 2016) will simply be a reflight of GRACE at the same altitude and with the same instruments

(accelerometers for removal of non-conservative forces and a K-band microwave ranging system for

inter-satellite ranging), only with a laser interferometer onboard as a technology demonstration.

Given this plausible scenario, the question arises as to how much benefit the addition of a second

pair of satellites would provide to a mission at a higher altitude and with larger measurement

system errors. This section of text attempts to address this question.

It is expected that the gap-filler mission will fly accelerometers similar in performance to

those on GRACE. The accelerometer noise can be modelled as (Bill Folkner, private communicate,

2011 )

ACCnoise = 0.1×
√

1 +
.005

f

nm

s2
√
Hz

, (6.1)

with f being the frequency. Furthermore, a realistic level of noise for the laser interferometer being
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considered for the mission is given by (Bill Folkner, private communicate, 2011 )

LASnoise =











50 nm√
Hz

×NSF 0.2 mHz < f < 100 mHz

50 nm√
Hz

all other f

(6.2)

with

NSF =

√

1 +

(

f

2 mHz

)−2

×

√

1 +

(

f

10 mHz

)−2

(6.3)

With these levels of errors, the accelerometer noise is the limiting source of error for the mission.

We assume that the altitude of the gap-filler mission will be similar to GRACE, and will be

around 500 km or slightly lower. Selecting appropriate values for the repeat period of the satellite

orbits as well as the inclination of the lower inclined pair is done by taking into consideration the

results from Chapter 5. As such, for the case of one satellite pair, we select a polar pair of satellites

at an altitude of 501 km in a 13-day repeating groundtrack. For the case of two satellite pairs,

we add a lower inclined pair of satellites to the one-pair architecture that is inclined at 72◦, in

a 13-day repeat period, and at an altitude of 473 km. Note that the two-pair architecture has a

complementary groundtrack pattern, as discussed in Chapter 5. For these simulations, we use the

simulation definition given in Table 3.1. Additionally, we estimate daily 18x18 gravity fields for

the case of two satellite pairs. Estimating the daily gravity fields provides much smaller benefits

at the higher altitude, as was discussed in Chapter 4, so this process could be eliminated entirely

if desired.

Figure 6.35 shows the errors in the spherical harmonic coefficients from the one-pair (left)

and two-pair architectures (right) from a simulation designed to recover hydrology and ice mass

variations. The plots on the top are the errors given the case of having measurement system errors

as defined in Equations 6.1 and 6.2. The plots on the bottom show the error from a simulation

(with the same orbits) using noise levels previously described in this dissertation assuming drag-free

operation and laser interferometry for inter-satellite ranging (see Section 3.2), and were included to

discriminate between the impact of raising the altitude of the satellites versus having less precise

measurements.
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Figure 6.35: Logarithm of the error in the spherical harmonic coefficients from recovering hydrology
and ice mass variations while using measurement system errors given by Equations 6.1 and 6.2 (top),
and for using measurement system errors as described in Section 3.2 (bottom). The plots on the
left are the results from the one-pair simulations while the plots on the right are the results from
the two-pair simulations.

Figure 6.35 shows much larger errors for all cases than those seen previously in this disserta-

tion (see Figure 6.2). For the case of higher measurement system errors, the two-pair architecture

offers slightly lower errors in the low degree coefficients than the one-pair architecture. When lower

measurement noise is considered, the two-pair architecture is shown to have considerably lower er-

rors than the one-pair architecture. This indicates that measurement system errors are the limiting

source of error for this case, as the error spectrum can be lowered simply by improving the accuracy

of the measurements.

Figure 6.36 shows the geoid height error from each architecture in recovering hydrology and

ice mass variations. For reference, an error curve from the current GRACE mission is shown. This

curve was obtained by running a simulation with one pair of satellites in a near-polar orbit in a
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30-day repeating groundtrack separated by 220 km at an altitude of 475 km with measurement

noise levels commensurate with that of GRACE. The plot on the left is the error from a simulation

with noise levels outlined in Equations 6.1 and 6.2 (higher measurement system errors), while the

plot on the right is the error from a simulation using noise levels as previously described in this

dissertation (see Section 3.2; lower measurement system errors).
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Figure 6.36: Geoid height error as a function of degree from recovering hydrology and ice mass
variations while using measurement system errors given by Equations 6.1 and 6.2 (left), and for
using measurement system errors as described in Section 3.2 (right)

Figure 6.36 shows there are minimal differences (for both levels of measurement noise) be-

tween the case of GRACE and the case of one satellite pair. This comparison more or less shows

that one can do equally well accumulating measurements for 13 days as what can be accomplished

with accumulating measurements for 30 days. Since the spacecraft are not flying drag-free for the

case of higher measurement noise, however, this repeat groundtrack would be difficult to maintain.

As such, homogeneous spacing over 13 days could not be guaranteed, meaning one would likely

need to accumulate measurements for 30 days prior to forming a gravity solution, similar to the

operations of the current GRACE missions. Both cases show the improvement that two satellite

pairs offers over one satellite pair. It is seen that with the higher precision measurements, two

pairs of satellites offer a greater improvement in performance, indicating that measurement errors

are limiting the mission performance at this point rather than the altitude or temporal aliasing

errors. It is seen that one can recover hydrology and ice signals out to approximately degree 30 with
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the higher measurement precision, while signals can only realistically be recovered out to degree

10-20 with the lower precision in measurements. In fact, it appears that the for the case of higher

measurement system errors, two pairs of satellites does not offer much improvement over what one

pair of satellites offers.

To examine this more thoroughly, Figure 6.37 shows the recovered signals spatially repre-

sented to degree 60 for the case with higher measurement system errors. Figure 6.38 shows the

equivalent plot, only with lower measurement system errors. The top plot is the truth hydrology

signal, while the middle row shows the recovered signals from one pair of satellites (left) and two

pairs of satellites (right). The bottom row of plots are the same results after the solutions have

been destriped and smoothed with a 300 km Gaussian averaging radius.

Figure 6.37 shows that with no post-processing, the two-pair solution has lower errors than

the one-pair solution. However, the solutions are quite noisy, and require destriping and smoothing.

After post-processing, the two-pair solution is seen to have slightly lower errors; it can be assumed

that a slightly smaller averaging radius could be used with these solutions versus the one-pair

solutions, resulting in a small improvement in spatial resolution. Rather than truncating the

solutions at degree 60 for this analysis, we could have truncated at a lower degree in hopes of

improving the two-pair solutions to such a level that they do not require post-processing. This

was attempted; however, it was found that post-processed degree 60 solutions offer better spatial

resolution than truncated solutions (at lower degrees) that do not require post-processing.

Alternately, for the case of lower measurement noise (given by that described in Section 3.2),

Figure 6.38 shows the two-pair solution has much smaller errors, however still large enough to merit

the destriping and smoothing processes due to errors at high degree coefficients. While Figure 6.38

represents the signals to degree 60, it was found that the two-pair solutions could be truncated at

degree 40 without the need for post-processing. The spatial resolution of the solutions truncated at

degree 40 is superior to solutions that have been truncated at higher degrees and post-processed.

Figure 6.39 illustrates this fact, showing the truth (left) and recovered signal (right) using two

satellites pairs (and lower measurement system errors) truncated at degree 40.
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Figure 6.37: The top plot shows the truth hydrology and ice signals averaged over 13 days. The
middle row shows the recovered signals for: one pair of satellites (left) and two pairs of satellites
(right) with higher measurement system errors. The bottom row shows the same recovered signals,
only after the solutions have been destriped and smoothed with a 300 km averaging radius. Units
are in cm of EWH.

As such, one can conclude from this section that there would be minimal scientific benefits in

adding a second pair of satellites if the satellites were flown at a higher altitude with measurement

noise levels commensurate with those described by Equations 6.1 and 6.2. Should the measurement

noise be improved to such a level as that described in Section 3.2, then the scientific benefits of
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Figure 6.38: The top plot shows the truth hydrology and ice signals averaged over 13 days. The
middle row shows the recovered signals for: one pair of satellites (left) and two pairs of satellites
(right) with lower measurement system errors. The bottom row shows the same recovered signals,
only after the solutions have been destriped and smoothed with a 300 km averaging radius. Units
are in cm of EWH.

having two pairs of satellites improve substantially, and continues improving as the altitude of the

satellites is lowered.
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Figure 6.39: Truth hydrology and ice signals (left) and recovered signals (right) using two satellite
pairs with lower measurement system errors truncated at degree 40. Units are in cm of EWH.

6.8 Conclusions

This chapter examines the expected performance for one pair of satellites, two polar pairs of

satellites, and a polar pair coupled with a lower inclined pair of satellites. It was shown that the

addition of a second polar pair of satellites does nothing to reduce correlations between coefficients

of the same order and same parity of degree. As such, longitudinal stripes still persist in the

solutions, and standard GRACE post-processing techniques are necessary. Once the solutions are

post-processed, the mass variations are nearly identical to the post-processed solutions obtained

using only a single pair of satellites. This indicates minimal, if any, improved performance in

determining mass variations with the addition of a second polar pair of satellites. Alternately, we

see with the addition of an optimally selected lower inclined pair of satellites (Case 13 in Table 5.5),

correlations between coefficients decrease, as do the formal and actual errors. The magnitude of

longitudinal stripes (for degrees up to 60) are small in comparison to the magnitude of hydrology

and ice signals. As such, solutions do not necessitate post-processing, and much more spatial

information is retained.

An EOF analysis reveals that two satellite pairs (one polar and one lower inclined) detects

annual variations in small river basins which are undetected using one pair of satellites. Averaging

kernels are used to analyze 53 hydrological basins across the globe as well as 12 basins in Greenland.

On average, when no post-processing is applied to the gravity solutions, two pairs of satellites offer
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an 80% reduction in error in determining mass variations in the basins over the year. After the

single satellite pair solutions have been destriped, smoothed, and mass has been restored using an

appropriate scale factor, two pairs of satellites (with no post-processing) still, on average, provide

a 25%-40% reduction in errors in determining mass variations in the hydrological basins and a

55%-75% reduction in errors in determining mass variations in the Greenland basins over the

year. Spatiospectral localization analysis is used to analyze ocean bottom pressure signals in the

Southeast Pacific Basin as well as a simulated earthquake signal similar to the 2010 Maule, Chile

earthquake. Two pairs of satellites improve the spatial resolution in determining the ocean bottom

pressure signal from 800 km to 570 km, and determines the total mass in the basin over the year

with 70% more accuracy than one satellite pair. While the earthquake signal is detected using

both architectures, two pairs of satellites increase the signal to noise ratio at higher degrees by

approximately one-half of an order of magnitude. It is expected that the addition of a second pair

of satellites will also allow for earthquakes smaller in magnitude to be quantified which otherwise

would be undetected with gravity measurements.

Perhaps the largest advantage of adding a second pair of satellites is that the solutions

do not necessitate ad hoc GRACE post-processing procedures when studying signals to spatial

resolution of ∼ 330 km. This eliminates much of the confusion as to what the destriping and

smoothing algorithms do to geophysical signals. Additionally, one does not need to worry about

applying incorrect scale factors to the solutions when trying to restore mass that the destriping

and smoothing processes have removed. The results presented here are regarded to be relatively

pessimistic for the case of two pairs of satellites. It is expected that optimized post-processing

techniques will be developed for such an architecture which would increase the spatial resolution

in the solutions even further. This, in turn, would allow for mass variations to be determined in

smaller river basins than those analyzed in this study.
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Conclusions and Recommendations

7.1 Conclusions

It is expected that future missions dedicated to recovering temporal gravity variations will

take advantage of improvements in technology by flying drag-free and using a laser interferometer

for inter-satellite ranging. With these improved measurement types, studies have shown that the

limiting source of error for such a mission will be due to undersampling signals of interest and mis-

modelling unwanted geophysical signals (i.e. temporal aliasing errors). The focus of this dissertation

has been on the reduction of temporal aliasing errors through the addition of an optimally-placed

second pair of satellites, as well as directly estimating high frequency gravity field variations.

Chapter 4 explored the option of estimating high frequency/low resolution gravity fields to

directly reduce temporal aliasing errors. This was performed for the case of a single polar pair of

satellites, two polar pairs of satellites, and a polar pair of satellites coupled with a lower inclined

pair of satellites. We found that for the case of a single pair of satellites, estimating 2-day 10x10

gravity fields provides some reduction in the level of error. However, in this scenario, the quality

of the estimates varies due to the variability in the groundtrack spacing over two days. On the

contrary, for the cases involving two pairs of satellites, it was shown that estimating daily 18x18

gravity fields is optimal, providing the most reduction in temporal aliasing errors. The absolute

lowest level of errors is given by the case of having a polar pair coupled with a lower inclined pair.

Estimating daily 18x18 gravity fields reduces the level of error in these solutions by approximately

33%.
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Chapter 5 optimized the orbits of two satellite pairs for recovering temporal gravity variations.

Given the scenario of having two dedicated pairs of satellites for temporal gravity recovery, the

search space for finding an optimal set of orbital parameters is infinite; and, in a large part depends

on the scientific objectives of the mission as well as mission constraints, such as required mission

lifetime and fuel availability, which directly affects the choice of orbital altitude. We assume the

scientific objectives of the mission are to determine hydrology, ice mass variations, and ocean bottom

pressure signals with as high spatial resolution as possible (with each area of science being weighted

equally). Additionally, we set a minimum allowable altitude of 290 km based on a projected 10-year

mission lifetime. Using a Monte-Carlo analysis and numerical simulations extended to degree and

order 100, a search space originally consisting of fifteen variables (the position and velocity of the

lead spacecraft of each pair, the separation distance between the satellite pairs, and the length of

time data are collected) is reduced to two variables with primary impact on mission performance:

the inclination of one of the satellite pairs (the other pair is assumed to be polar), and the repeat

periods of both pairs of satellites (shown to be near-optimal when they are equal to each other).

This analysis assumes a 100 km inter-satellite separation distance, and circular orbits in repeating

groundtracks. It is found that an optimal value for the inclination of the second pair of satellites

is between 70o and 75o, while an appropriate range for the repeat periods of both satellite pairs

is between 11 and 14 days. The notion of optimizing the relative differences in the longitude of

ascending node and the argument of latitude between the two pairs was also discussed in relation to

creating complementary groundtrack patterns. It is shown that by raising the altitude of the polar

pair, the nodal drift rate of the lower inclined pair can be compensated for such that a groundtrack

pattern with crossings at constant lines of latitude is created. While numerical simulation results

imposing this constraint are not conclusive as to whether this definitively results in improved

mission performance, there is an argument for having a geometry that permits consistent global

mapping of the gravity field. As such, we choose an ‘optimized’ two-pair mission architecture to

consist of a polar pair of satellites at 290 km coupled with a lower inclined pair of satellites (72◦)

at 320 km, both in 13-day repeating orbits, and having a complementary groundtrack pattern with
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crossings at constant lines of latitude.

Chapter 6 discussed the expected improvements in performance that an optimized two-pair

architecture provides over one pair of satellites. Results are analyzed both globally and regionally.

An EOF analysis reveals that two satellite pairs detect mass variations in small river basins which

are undetected using one pair of satellites. Global analysis of results are insufficient by themselves,

however, as the ability to recover mass variations in a particular region depend on the size of

the signal and error, the geographic location, and the space-time sampling characteristics of the

satellites. As such, the best one can hope to do to characterize mission performance is to perform

realistic numerical simulations to recover mass variations in a variety of regions. Averaging kernels

are used to analyze 53 hydrological basins across the globe as well as 12 basins in Greenland. On

average, when no post-processing is applied to the gravity solutions, two pairs of satellites offer

an 80% reduction in error in determining mass variations in the basins over the year. After the

single satellite pair solutions have been destriped, smoothed, and mass has been restored using an

appropriate scale factor, two pairs of satellites (with no post-processing) still, on average, provide

a 25%-40% reduction in errors in determining mass variations in the hydrological basins and a

55%-75% reduction in errors in determining mass variations in the Greenland basins over the

year. Spatiospectral localization analysis is used to analyze ocean bottom pressure signals in the

Southeast Pacific Basin as well as a simluated earthquake signal similar to the 2010 Maule, Chile

earthquake. Two pairs of satellites improve the spatial resolution in determining the ocean bottom

pressure signal from 800 km to 570 km, and determines the total mass in the basin over the year

with 70% more accuracy than one satellite pair. While the earthquake signal is detected using

both architectures, two pairs of satellites increase the signal to noise ratio at higher degrees by

approximately one-half of an order of magnitude. It is expected that the addition of a second pair

of satellites will also allow for earthquakes smaller in magnitude to be quantified which otherwise

would be undetected with gravity measurements.

Perhaps the largest advantage of adding a second pair of satellites is that the solutions

do not necessitate ad hoc GRACE post-processing procedures when studying signals to spatial
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resolution of ∼ 330 km. This eliminates much of the confusion as to what the destriping and

smoothing algorithms do to geophysical signals. Additionally, one does not need to worry about

applying incorrect scale factors to the solutions when trying to restore mass that the destriping

and smoothing processes have removed. The results in this paper are regarded to be relatively

pessimistic for the case of two pairs of satellites. It is expected that optimized post-processing

techniques will be developed for such an architecture which would increase the spatial resolution

in the solutions even further. This, in turn, would allow for mass variations to be determined in

smaller river basins than those analyzed in this study.

The option of having two polar pairs of satellite was also discussed. It was found that while

two polar pairs of satellites does provide lower errors than one pair, correlations between coefficients

persist, and as such, longitudinal striping dominates the solutions. After the solutions have been

destriped and smoothed, there are negligible differences between the solutions obtained from one

pair of satellites and two polar pairs of satellites. This indicates minimal, if any, increases in spatial

resolution (although the temporal resolution will be increased by a factor of two) simply by adding

a second pair of polar orbiting satellites. Finally, it was shown that for a scenario in which the

satellites are at higher altitudes and have measurement system errors commensurate with those

of the current GRACE mission (as is expected for the 2016 gap-filler mission), minimal scientific

benefits are seen by adding an optimally-placed second pair of satellites, as the performance is

limited by the measurement system errors.

7.2 Recommendations

If sufficient funds are available in the future to provide two pairs of satellites dedicated to

recovering temporal gravity variations (and are flown drag-free with inter-satellite laser ranging),

we recommend that one of the pairs be placed in a polar orbit and the other be placed at a moderate

inclination, between 70◦ and 75◦. Both satellites should be placed in repeating groundtracks with

equivalent repeat periods between 11 and 14 days, and flown at as low of an altitude as possible (300

km has been shown to be sufficient for large scientific benefits). This work has provided the context
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to significantly reduce the search space for an optimal architecture based on the specific scientific

objectives of the mission as well as mission constraints (such as satellite altitude/mission lifetime),

and should be used accordingly. We expect significant scientific benefits given this scenario.
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